M1 General Physics 2022-2023
Particles

Exam

Second session
February 9th 2023

Documents allowed

Notes:

- The subject is deliberately long. Solving at least one of the two problems will ensure
a good mark!

- One may use the usual system of units in which ¢ =1 and h = 1.

- Space coordinates may be freely denoted as (z,y, z) or (z!, 2% 23).

- Any drawing, at any stage, is welcome, and will be rewarded!

1 Photo-production of charm

The lightest meson containing a charmed quark is the DP. The production of a D° meson
and of its anti-particle D° can be done by using a beam of high energy photons which collide
with protons (immobile in the reference frame of the laboratory R) according to the reaction

yp—pD’ D" (1)
We denote as m,, the proton mass and mg the D” mass (which is identical to the mass of the
DY).
1. We seek to determine the reaction threshold, i.e. the minimum energy of the photon for

which the reaction can take place. We will note £, the value of this energy in the laboratory
reference frame.

(i) Recall the definition of the center of mass reference frame R*.

Solution

This is the frame in which the total momentum is zero.

(ii) At threshold, the momentum in R* of each produced particle vanishes. Write in R* the
sum of the incoming energies EJ + E7 as a function of m,, and my.

Solution

The conservation of energy implies that E + E; should be identical to the sum of the energy
of the produced particles. Since they are at rest, those energies are equal to their masses.
Therefore,

EZ+ E) =my, + 2mg.
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(iii) Compute (p, + p,)? in both R and R* frames and deduce the value of E, as a function
of m,, and my.

Solution

In the laboratory frame, p, = 0, therefore
(py +pp)2 = mf, +2py - pp = mg +2E,E, —2p., - D, = mf) +2E,m, = (E: + E;;)2 = (m, + 2myg)?
and thus

4mg + 4 2mg
_ Amd + dmymy - 2m
2m,, my

E

v =

(iv) Compute numerically E..
We give m, = 938 MeV /c? and mg = 1865 MeV /c?.

Solution

One gets £, ~ 11.15 GeV.

2. We want to create a beam of very energetic photons. For this we use the Compton back-
scattering : a beam of electrons of 30 GeV collides head-on with a monochromatic beam of
monochromatic beam of photons of wavelength A\; = 266 nm (a laser). The kinematics of the
process is represented on the figure below in the laboratory frame R as well as in the frame
R’ in which the electron (bold point) is initially at rest. The incident photon is designated
by 1 and the scattered photon by 2.

—/
%)

(i) Write the conservation of the quadri-momentum in R’. Deduce the expression of the
energy E! of the scattered electron as a function of the energy E] of the incoming photon,
of the energy E! of the scattered photon and of the mass m, of the electron.

Solution

In the frame R', the energy of the incoming electron is m.. The conservation of energy thus
reads

Ei+m.=FEy+ E.
so that
E.=F| — E,+m,.
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(ii) Show that one has the following relation in R’

E/
By=———! : (2)
1+ -1(1—cost)

Solution

Energy-momentum conservation reads
/ /
Py — P1 = Pe; — Pey
so that taking the square gives
(Py — p1)? = =20, - phy = (Pe; — Pe,)? = 2m2 — 2m.E,
Using the conservation of energy, see the previous question, one thus gets
—2FE)(1 — cos ') = —2m E] + 2m. E}

so that, as expected,

(iii) Express the Lorentz factor v when passing from the frame R to R’, and compute its
numerical value.

Compute the numerical values of Fy, E| and E}(0' = 7).
We give m, = 0.511 MeV /c? and h = 6.626 - 1073 J.s.

Solution
One has E. = ym,, so that
E 30 x 103
= =""" " ~587-10*.
Y= T Tos o810

The Lorentz transformation reads

El = ~yE; —fBvp. =7 E1+ BvE1 =~v(1+ B)E) ~ 29E;

Besides,
El/
Ey (0 =) . ;ﬂ



Thus,

h
E, = 70 ~ 747107 ~ 4,666V,

E] ~ 548keV
and
Ey ~174%keV .
3. Backscattering
(i) Justify that cos@® = —p,o/FEs, and write a similar relation in R'. Using the Lorentz
transformation allowing to pass from R to R, deduce that
cosf — 3
0= 3
€03 1 — [Bcost )
Solution

Since for the two photons F; = ||p;|| and E, = ||p,||, we have, by a simple projection on the
T axis:

pe2 = —Eycos6 and pl, = —FEjcost .
Besides, the Lorentz transformation reads

Ey = ~Ey— 70D,
Voo = Y(=BE>+ pa2).

Inserting the above expressions for p,o and p/, in the second equality thus gives

—FEycosf = —yFy (B - %) = —vE5(f + cosb).
2

The LHS of the first equality reads, using the expression of E) from the Lorentz transforma-
tion as well as the expression of p,o:

—(vFEy — yBpya) cos @ = —yE,cosl — yB3Fy cosf cos b’ .
Equating with the RHS, we get
—vEycos8 — vBFE5 cosfcost = —yEq (5 + cosb)
and thus
cosf(1 — fcos) = cost — 3

which immediately leads to



(ii) In the SLAC setup, deduce that the photons are mainly emitted in the forward region
in the laboratory frame (6 ~ 7 .).

Solution

Since v > 1, 8 — 1 so that cosf ~ —1,ie. 6 ~ 7.

(iii) What is the dominant angle of emission in the frame R’?

Solution
Solving for cos @' gives
cost = cosb+ P .
1+ B cost
Thus, since § — 1,
cosf + 1
cos ) ~ o oot =

and thus again 0’ ~ 7.

(iv) Suppose, just for the present question, that ~ is arbitrary (therefore the electron may
or may not be relativistic in the laboratory frame). If one detects the scattered photon at
an angle # = 7 in the laboratory frame, what would be the angle 6’ in the rest frame of the
electron?” Comment.

Solution

Inserting € = 7 in the previous relation gives

145
1-p

so that 6 = 7. This is expected from physical arguments: if the momentum of the photon

=-—1

cosl =

has no transverse component (since # = 7), this remains true after a longitudinal boost, so
that the photon remains along the x axis. Thus, 8’ = 0 or ¢’ = 7. Besides, the boost cannot
reverse its momentum by continuity with respect to the  parameter (at v =1, i.e. R = R/,
and trivially 6 = ') so that 6/ = 7.

(v) Express the energy Ej for § = 6" = 7. Compute its numerical value. Comment.

Solution




From question (i), the boost implies that for 6§ = 0’ = 7,
Ey=~(1-B)Ey ~ gE2

since
5 1 1
N

Thus, Ey ~ 2yE}, ~ 20.4-10° eV: the amplification factor for the photon energy is enormous,
since Ey/Ey ~4.4-10° !

y

4. Below is the photon energy spectrum produced at SLAC, in an experiment dedicated to
charm photoproduction. Comment.
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Figure from AIP Conference Proceedings 113, 419 (1984).

Solution

The energy distribution has a clear peak, corresponding to the backscattering configuration.
Its value is in accordance with our result for Fs in this configuration.

2 Field of a charge in uniform rectilinear motion

We consider a charge ¢ in uniform rectilinear motion at the speed ¢ in the observer’s refer-
ence frame K. Let us note K’ the rest frame of this charge, located at the origin O’ of this
one. We orientate the frames linked to K and K’ so that the axes z; and z are collinear,
with x; and x| pointing in the direction of the motion of the charge, and thus v = v,
(v > 0). We will note ¢t and ¢’ the times respectively in the reference frames K and K.
We suppose that at ¢ = ¢/ = 0, the origins O and O’ of the two reference frames coincide.



The observer is at a distance b from O in the reference frame K, oriented so that O? =, Us.
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2.1 Preliminary question:

We consider two inertial reference frames K and K " so that K’ is obtained from K by an
arbitrary boost of velocity v = beta = 7i. Let us denote {E, B} and {E’, B’} the electro-
magnetic fields respectively in these two rgference frames. We recall the following relations
allowing us to express {E', B’} using {F, B}:
B = (E-ﬁ)ﬁ+7[ﬁ—(ﬁ-ﬁ)ﬁ]+76/\§, (4)
B = (E-ﬁ)ﬁﬂ[é—(é-ﬁ)ﬁ}—ymﬁ. (5)
Express {E, B} as a function of {E’, B'}.

Solution

On should just write the inverse transformation, which amounts to reversing the direction
of 8, i.e. de 7 in the relations (4) and (5). On thus gets

E = (B-@i+n [E'—(E'-ﬁ)ﬁ} N EAE,

o]}
I

(B )i + [é'— (E'-ﬁ)ﬁ] FATAE.

2.2 Fields
1. Show that in K’, the electromagnetic fields at point P can be written as
qut’
Ei = _W s (6>
qb
E, = — 7
2 471'7’/3 ’ ( )
E; = 0, (8)
B = 0. (9)



Provide the expression of 7’ as a function of b and #'.

Solution

The result is simply the expression of the Coulombian field of a static charge: zero magnetic

field and electric field given by

5 b— ot _qE—ﬁt’
1o — at||* r

with ' = /02 + (vt')2.

2. Show that using the coordinates of K, this field also reads

q vyt
E = = 10
1 4 (b2 —i—v?v?t?)?’/z’ (10)
q b
E, = = . 11
2 AT (52 4 0272152)3/2 (11)
Solution
It is enough to use the fact that ¢’ = v(t — vzy) = vt since z; = 0 for the observer P.
3. Show that
q vyt
E, = BF =—— 12
1 1 A (b2 I 0272t2)3/27 ( )
q b
E, = yE,=-*- 13
2 YLy 4 (b2 i 0272152)3/2 ) ( )
Bs = BE;=BE,;. (14)

Solution

The relation which allows to express {E, B} as a function of {E’, B’} here reads

E = Ei, +~ Ebii
B = yBAE =i AiE), = yvELis
and thus
E, = Fj
Ey = vk,

B3 = ’}/’UEé = BEQ




2.3 Non relativistic limit

4. Consider the limit v — 1.

i) Discuss and comment the expression of the electric field E in this limit.

Solution

We have, by confusing 7 = b— ot and 7 in the non relativistic limit,

q —vt
E, ~ ————
! 47 713
q b
Ey ~ ——
2 4 3
so that
o q r
EF=———
43

in agreement with the expression of the Coulombian field in the absence of relativistic effect.

ii) Same questions for the magnetic field B. The result obtained will be interpreted from the
point of view of the law of Biot and Savart.

Solution
In this limit, one has
5= qub
B~ )
A3 8

The law of Biot and Savart

E(f) _ /d3y j(g) A (f_ ?j)

Ar||Z — 5]
here gives, since j(g]) = q0®) (y — vt) 7,

L qiA(b—Tt)  qub
B(b) = = = us,
) dmllb —gtp Amrs

in accordance with the result obtained.




2.4 Study of relativistic effects

5. Time variation of the field transverse to the direction of motion of the particle FEs.

i) Plot the transverse field Ey as a function of vt, for v ~ 1 and v > 1.

Solution

Plot of the field F5 as a function of vt. In continuous line, case v = 4, in dashed line case
~v = 1. We arbitrarily set ¢ = 47 to fix the vertical scale.

ii) Specify the possible extrema, and their temporal width.

Solution

The E5 component is maximal at t=0. Its value is

vq
Amh?

E2 maxr —

For the electromagnetic field to have an appreciable amplitude compared to its maximum,
it is necessary that

b2 > 2022
so that

b
It < — = At.
YU

iii) Discuss the change in the shape of Es when we go from < 1 to f — 1.

Solution

From the previous question, the peak of E5 is more pronounced and narrower the larger ~
is.

6. Time variation of the longitudinal field F;.
i) Study and plot the longitudinal field £ as a function of vt, for v ~ 1 and v > 1.
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Curve of the field F; as a function of vt. In continuous, case v = 4, in dashed line case v = 1.
We arbitrarily set ¢ = 47 to fix the vertical scale.

Denotes x = vt et y = yvt = yx. Then

q Y

r=————""
1 Ar (b2 + y2)3/2

and

diEn| _dy . ydy
Bl oy Pty

vanishes for 3y? = b% + ¢ so that y = +b/v/2, i.e. vt = £b/(1/27). For these to values of y,
which correspond to a maximum of |F|,

B o qb 1 _q 2
Hmae = o2 (B2 + 02/2)32 — 4xb® /27

Note that these two extrema have an independent amplitude of ~.

ii) Specify the possible extremes.

Solution

See the previous question.

iii) Discuss the change in the shape of E; when we go from § < 1 to 8 — 1.

Solution

The peaks of E; are all the more tightened as 3 is close to 1. Their amplitude does not
change, contrary to the maximum of Ej.

7. Compare the amplitude of these two fields in the § — 1 limit
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Solution

The transverse field has a maximum value typically v times larger than the longitudinal
field. In this limit, it thus dominates.

8.1) At t = 0, compare the electric field transverse to the direction of motion of the particle
FE5 to its non-relativistic value.

Solution
One has
q b q
E t=0)=— —_ 35 = EnonreaivisiC'
2( ) A (b2)3/2 A7 b2 Y L2 lativist

ii) Give an order of magnitude of the duration of the electromagnetic pulse resulting from
the passage of the charged particle.

Solution

It is the temporal width At = 7% of the peak of E5 determined above.

iii) Discuss the effect of the longitudinal field.

Solution

The longitudinal field E; varies very rapidly from a positive value (in the case where ¢ is
positive) to a negative value, and its average value is zero. This variation takes place over a
time of the order of At. Over longer times, the effect of this field is therefore null.

iv) For a low temporal resolution (in front of a scale to be specified), show that the E field
behaves like a plane wave whose structure (polarization and direction of propagation) will
be specified.

Solution

For long averaging times with respect to At, the perceived field is identical to that of a
transversally polarized plane wave propagating along u;: the longitudinal component has a
negligible effect, and the transverse component is orthogonal to the magnetic field, both of
identical amplitudes and orthogonal to .
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9. It is assumed that the moving charge is a particle of charge ¢ = ze and that in P is an

atomic electron of charge —e.

i) From the above, deduce an evaluation of the impulse transferred Ap to the electron during
the passage of the mobile charge. Verify that the result is independent of ~.

Solution

From the above, only the transverse field is to be considered. We have

b 1 v ze?
Ap ~ zeByAl ~ —ze* —— L ~ — :
bzt = ~yv 47 b2 4mbv
which is independent of ~.
ii) Calculate this transferred pulse exactly.
Solution
One has
+oo zer [T vt/b zer [t dx
/ zel(t)dt = — / 10t/ 213/2 / (1 1 +2)3/2
o dmob J_oo 1+ (yout/b)2]3/ drob J_oo (14 22)3/
_ ze? T O ze?
drob (1 +22] 2mvb
Indeed,
/X dx _ a0 3/2__/1/X tt (] e
(1+ 22)3/? t? 12 B (1+12)3/2 X2
B X
VI X2
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