
M1 General Physics 2023-2024

Particles

Final exam

January 10th 2024

Documents allowed

Notes:

- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- The system of unit is such that c = 1, ~ = 1, ǫ0 = 1, µ0 = 1.
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- One may always assume that fields are rapidly decreasing at infinity.
- Drawings are welcome!

1 Belinfante tensor

We consider a Lagrangian describing particles with spin. The Lagrangian density is assumed
to have no explicit dependence with respect to space-time position.

1. Recall the origin of the conservation of the canonical energy-momentum tensor, denoted
as T µν , and the expression of the conserved charge in terms of T µν . How is it named?

Solution

This is due to the invariance of the Lagrangian with respect to space-time translations, which
implies the invariance of the action, and thus the existence of conserved currents by Noether
theorem. The conserved charge is the 4-momentum, which reads

P ν =

∫

T 0ν d3x .

2. Recall the origin of the conservation of angular momentum, denoted as Jµ,νλ, and the
expression of the conserved charge Jνλ. What are the symmetry properties of Jµ,νλ and Jνλ?

Solution

This is due to the invariance of the Lagrangian with respect to Lorentz transformations,
which implies the invariance of the action, and thus the existence of conserved currents by
Noether theorem. The conserved charge is

Jνλ =

∫

J0,νλ d3x .

Both Jµ,νλ and Jνλ are antisymmetric with respect to ν ↔ λ.
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3. In the case of a particle of arbitrary spin, the angular momentum tensor takes the form

Jµ,νλ = xν T µλ − xλ T µν + ∆µνλ , (1)

where ∆µνλ is a function of the fields, antisymmetric with respect to ν ↔ λ.

i) What would be the value of T µν − T νµ for a particle of spin 0?

Solution

In this case, ∆µνλ = 0 and thus the conservation of Jµ,νλ implies that, using the conservation
of T µν

∂µJ
µ,νλ = gνµT

µλ − gλµT
µν = T νλ − T λν = 0 .

Thus T µν is symmetric.

ii) In the general case, compute T νλ − T λν in terms of ∆µνλ.

Solution

We now get

∂µJ
µ,νλ = gνµT

µλ − gλµT
µν + ∂µ∆

µνλ = T νλ − T λν + ∂µ∆
µνλ = 0

and thus

T λν − T νλ = ∂µ∆
µνλ.

4. We introduce the Belinfante energy-momentum tensor

T µν
B = T µν +

1

2
∂λ
[

∆µνλ +∆νµλ −∆λνµ
]

. (2)

i) Show that T µν
B is conserved.

Solution

We have

∂µT
µν
B = ∂µT

µν +
1

2
∂µ∂λ

[

∆µνλ +∆νµλ −∆λνµ
]

= 0 .

Indeed:
- the second term gives 0 since ∂µ∂λ is symmetric while ∆νµλ is antisymmetric.
- λ and µ are summation indexes, thus the first and the third term compensate.
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ii) What can be said on the symmetry properties of T µν
B ?

Solution

T µν
B − T νµ

B = T µν − T νµ +
1

2
∂λ
[

∆µνλ +∆νµλ −∆λνµ −∆νµλ −∆µνλ +∆λµν
]

= ∂λ[∆
λνµ +∆λµν ] = 0

where we have used the antisymmetry of ∆λµν with respect to µ ↔ ν.

iii) Compare the charge associated to T µν to the one associated to T µν
B . Conclusion?

Solution

The charge associated to T µν is the 4-momentum of the field. It reads

P ν =

∫

T 0νd3x .

The one associated to T µν
B is

P ν
B =

∫

T 0ν
B d3x =

∫

T 0νd3x+
1

2

∫

∂λ
[

∆µνλ +∆νµλ −∆λνµ
]

d3x .

The second term in the RHS is the integral over the whole space of a total derivative, thus it
vanishes thanks to the fast decreasing fields at infinity. In conclusion, the total 4-momentum
of the field is the same, although its local density differs. This is the reason why T µν

B can be
named energy-momentum tensor.

iv) Show that the total angular momentum of the field can be defined using a local density
built from the local density of the 4-momentum, just like in the scalar case, using T µν

B instead
of T µν , i.e. show that

Jνλ =

∫

(xνT 0λ
B − xλT 0ν

B ) d3x (3)

Solution

We have

Jνλ
B =

∫

(xνT 0λ
B − xλT 0ν

B ) d3x

=

∫

(xνT 0λ − xλT 0ν) d3x

+
1

2

∫

[

xν∂α
(

S0λα + Sλ0α − Sαλ0
)

− xλ∂α
(

S0να + Sν0α − Sαν0
)]

.
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In this equation, the second term in the RHS can be rewritten after performing an integration
by part, so that

Jνλ
B =

∫

(xνT 0λ − xλT 0ν) d3x−
1

2

∫

[

gνα
(

S0λα + Sλ0α − Sαλ0
)

− gλα
(

S0να + Sν0α − Sαν0
)]

d3x

=

∫

(xνT 0λ − xλT 0ν) d3x−
1

2

∫

[

S0λν + Sλ0ν − Sνλ0 − S0νλ − Sν0λ + Sλν0
]

d3x

=

∫

(xνT 0λ − xλT 0ν) d3x−
1

2

∫

[

S0λν − S0νλ
]

d3x

where to get the last line, we have canceled the second with the last term, as well as the
third term with the fifth one, using the antisymmetry of Sµνρ with respect to ν ↔ ρ. Using
again this antisymmetry, we finally get

Jνλ
B =

∫

(xνT 0λ − xλT 0ν + S0νλ) d3x = Jνλ

as expected.

2 Lorentz Transformation of Electric and Magnetic Fields

Einstein’s first postulate of the Special Theory of Relativity tells that the laws of physics have
the same mathematical form in inertial frames moving with constant velocity with respect
to each other. In this problem, we will rely on this postulate to get the law of transformation
of electric and magnetic fields.
Consider, in frame S, a particle of rest mass m and charge q moves with velocity ~u in an
electric field ~E and a magnetic field ~B and experiences a force

~F = q( ~E + ~u ∧ ~B) (4)

so that, denoting as ~p the momentum of the particle in S,

d~p

dt
= q( ~E + ~u ∧ ~B) . (5)

In frame S ′, which moves along the x−axis of S with speed β = v, the velocity of the particle
is ~u ′ and the particle experiences a force

~F ′ = q( ~E ′ + ~u ′ ∧ ~B ′) (6)

where ~E ′ and ~B ′ are the electric and magnetic field, respectively, in S ′, so that

d~p ′

dt′
= q( ~E ′ + ~u ′ ∧ ~B ′) , (7)

where ~p ′ is the momentum of the particle in S ′.

1. Show that

dt′

dt
= γ(1− uxβ) . (8)
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Solution

This is obvious from the expression of a Lorentz transformation, using the fact that dx = uxdt
and

dt′ = γdt− γβdx . (9)

2. Express (p′
0
, ~p ′) in terms of (p0, ~p).

Solution

We have

p′
0

= γ(p0 − βpx) (10)

p′x = γ(px − βp0) (11)

p′y = py (12)

p′z = pz . (13)

3. Justify that

dp0
dt

= q~u · ~E (14)

and

dp′
0

dt′
= q~u ′ · ~E ′ (15)

Solution

This just comes from the fact that

dp0
dt

= ~u · ~F and
dp′

0

dt′
= ~u ′ · ~F ′.

4. Show that

u′
x =

ux − β

1− βux

(16)

u′
y =

1

γ

uy

1− βux

(17)

u′
z =

1

γ

uz

1− βux

. (18)

Comment on the non-relativistic limit ux ∼ β ≪ 1.
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Solution

We have, through differentiation,

{

dt′ = γ dt − γβ dx
dx′ = −γβ dt + γ dx

which gives

u′
x =

dx′

dt′
=

−γβdt+ γdx

γdt− γβdx
=

ux − β

1− βux

.

Besides,

u′
y =

dy′

dt′
=

dy

γdt− γβdy
=

1

γ

uy

1− βux

,

and similarly

u′
z =

dz′

dt′
=

dz

γdt− γβdz
=

1

γ

uz

1− βux

.

At lowest order, we get u′
x ∼ ux − β, u′

y ∼ uy and u′
z ∼ uz as expected in the change of

inertial frame in non-relativistic mechanics.

5. From the known result based on the fact that F µν transforms as a 2-contravariant tensor
under Lorentz transformations, write the components of ~E ′ and ~B ′ in terms of the compo-
nents of ~E and ~B.

Solution

Using

~E ′ = ( ~E · ~n)~n+ γ
[

~E − ( ~E · ~n)~n
]

+ γ ~v ∧ ~B ,

~B′ = ( ~B · ~n)~n+ γ
[

~B − ( ~B · ~n)~n
]

− γ ~v ∧ ~E ,

we obtain

E ′
x = Ex ,

E ′
y = γ(Ey − βBz) ,

E ′
z = γ(Ez + βBy) ,

B′
x = Bx ,

B′
y = γ(By + βEz) ,

B′
z = γ(Bz − βEy) .
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6. Determine directly the relationship between the electric and magnetic fields in S and S ′,
obtained in the previous question.

Hint: using the various expressions obtained above in questions 1,2,3,4, express the LHS of
Eqs. (14) and of (7) in terms of quantities in frame S, and in each case, compare then LHS
with RHS.

Solution

We get from Eq. (15), using Eqs. (16), (17) and (18),

dp′
0

dt′
= q~u ′ · ~E ′ = q

[

ux − β

1− βux

E ′
x +

1

γ

uy

1− βux

E ′
y +

1

γ

uz

1− βux

E ′
z

]

=
1

1− βux

(

dp0
dt

− β
dpx
dt

)

where we have used Eqs. (10) and (11). Using now (5) and (14), we have

dpx
dt

= q[Ex + uyBz − uzBy] ,

dpy
dt

= q[Ey + uzBx − uxBz] ,

dpz
dt

= q[Ez + uxBy − uyBx]

and

dp0
dt

= = q[uxEx + uyEy + uzEz] ,

so that

q

[

ux − β

1− βux

E ′
x +

1

γ

uy

1− βux

E ′
y +

1

γ

uz

1− βux

E ′
z

]

=
q

1− βux

[uxEx + uyEy + uzEz − β(Ex + uyBz − uzBy)]

and thus

γ(ux − β)E ′
x + uyE

′
y + uzE

′
z = γ(ux − β)Ex + uyγ(Ey − βBz) + uzγ(Ez + βBy) .

This should be valid for any ~u, which implies that

E ′
x = Ex ,

E ′
y = γ(Ey − βBz) ,

E ′
z = γ(Ez + βBy) .

Similarly, we have

dp′x
dt′

= q[E ′
x + u′

yB
′
z − u′

zB
′
y] = q

[

E ′
x +

1

γ

uy

1− βux

B′
z −

1

γ

uz

1− βux

B′
y

]

=
1

1− βux

(

dpx
dt

− β
dp0
dt

)

=
q

1− βux

[Ex + uyBz − uzBy − β(uxEx + uyEy + uzEz)]

7



and thus

E ′
x + uyB

′
z − uzB

′
y = Ex + uyγ(Bz − βEy)− uzγ(By + βEz) ,

which implies that

E ′
x = Ex ,

B′
y = γ(By + βEz) ,

B′
z = γ(Bz − βEy) .

Next,

dp′y
dt′

= q[E ′
y + u′

zB
′
x − u′

xB
′
z] = q

[

E ′
y +

1

γ

uz

1− βux

B′
x −

ux − β

1− βux

B′
z

]

=
1

γ

1

1− βux

dpy
dt

=
q

γ(1− βux)
[Ey + uzBx − uxBz]

and thus

uzB
′
x + γ(1− βux)E

′
y − (ux − β)γB′

z = Ey + uzBx − uxBz ,

which implies that

B′
x = Bx ,

Ey = γ(E ′
y + βB′

z) ,

Bz = γ(B′
z + βE ′

y) .

Finally,

dp′z
dt′

= q[E ′
z + u′

xB
′
y − u′

yB
′
x] = q

[

E ′
z +

ux − β

1− βux

B′
y −

1

γ

uy

1− βux

B′
x

]

=
1

γ

1

1− βux

dpz
dt

=
q

γ(1− βux)
[Ez + uxBy − uyBx]

and thus

γ(1− βux)E
′
z + γ(ux − β)B′

y − uyB
′
x = Ez + uxBy − uyBx ,

which implies that

B′
x = Bx ,

By = γ(B′
y − βE ′

z) ,

Ez = γ(E ′
z − βB′

y) .

This is in agreement with the result of question 5.
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3 Breit frame

Consider the elastic scattering of two particles A and B, of masses mA and mB respectively.
In a given inertial frame F , the momenta of particles A and B are PA = (EA, ~pA) and
PB = (EB, ~pB) before the scattering, and P ′

A = (E ′
A, ~p

′
A) and P ′

B = (E ′
B, ~p

′
B) after the

scattering.

1. Show that there is an inertial frame B, named Breit frame, in which ~pA + ~p ′
A = ~0. What

is the velocity of this frame with respect to the frame F?

Solution

This choice is always possible: one should just boost from F , in which ~pA + ~p ′
A is arbitrary,

to the frame B in which ~pA + ~p ′
A = 0. The velocity of this frame is thus

~v = c2
~pA + ~p ′

A

EA + E ′
A

.

2. Show that in Breit’s frame, the modulus of the momentum of each particle as well as their
energies are conserved during elastic scattering.

Solution

Working now in Breit’s frame, we denote as pA, pB, p′A, p′B the modulus of ~pA, ~pB, ~p ′
A, ~p ′

B

respectively. The fact that pA = p′A is obvious from the definition of Breit’s frame. Thus,
EA = E ′

A. Conservation of energy, which reads EA + EB = E ′
A + E ′

B thus implies that
EB = E ′

B. Finally, one deduces that pB = p′B.

3. We use the standard notation ∗ for a given quantity in the center-of-mass frame. Let us
introduce the Mandelstam variable t = (PA − P ′

A)
2.

i) What is the property of t with respect to Lorentz transformations?

Solution

t is a Lorentz invariant.

ii) Compare p∗A, p′ ∗A , p∗B, p′∗B.

Solution

By definition of the center-of-mass frame, ~p ∗
A + ~p ∗

B = 0 and thus p∗A = p∗B. Conservation of
momentum implies that ~p ′ ∗

A +~p ′ ∗
B = 0 and thus p′∗A = p′∗B. Finally, conservation of momentum

implies that
√

m2

A + p∗2A +
√

m2

B + p∗2A =
√

m2

A + p′∗2A +
√

m2

B + p′∗2A

and thus p∗A = p′∗A.
Conclusion: p∗A = p′ ∗A = p∗B = p′∗B.
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iii) Compute t in the center-of-mass frame, and show that the scattering angle θ∗ satisfies

cos θ∗ = 1 +
t

2p∗2A
. (19)

Solution

We have

t = (P ∗
A − P ′∗

A )2 = 2m2

A − 2P ∗
A · P ′∗

A

= 2m2

A − 2E∗2
A + 2~pA · ~p ′

A

= −2p∗2A + 2p∗2A cos2 θ∗ = 2p∗2A (cos2 θ∗ − 1)

and thus

cos θ∗ = 1 +
t

2p∗2A
. (20)

iv) Working now in the Breit’s frame, deduce that

pA = p∗A sin
θ∗

2
. (21)

Solution

Let us compute the Mandelstam variable t in the Breit’s frame. Since EA = E ′
A and pA = p′A,

we get

t = (EA − E ′
A)

2 − (~pA − ~p ′
A)

2 = −4p2A

so that

p2A = p∗2A
1− cos θ∗

2
= p∗2A sin2

θ∗

2
,

and thus

pA = p∗A sin
θ∗

2
.

4. (*) Show that

pB = p′B = p∗A

√

sin2
θ∗

2
+ γ2 cos2

θ∗

2

(

1 +
E∗

B

E∗
A

)2

(22)
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and

EB = E ′
B = γ

(

E∗
B +

p∗2A
E∗

A

cos2
θ∗

2

)

, (23)

where γ is the Lorentz factor when boosting from the center-of-mass frame to the Breit’s
frame.

Hint: make a drawing and identify the direction of the boost. Then use the explicit form of
this boost.

Solution

Let ‖ be the direction of ~p A + ~p ′
A, and ⊥ the direction of ~p A − ~p ′

A.
One should perform a boost along the direction ‖, such that ~pA‖ and ~p ′

A‖ vanish, while their
⊥ components remain identical to their value in the center-of-mass frame, and thus opposite.
This will turn ~pA and ~p ′

A‖ to be opposite, as it should be in Breit’s frame.
This boost from the center-of-mass to the Breit’s frame thus looks as follows:

~p ∗
A

~p ∗
B

~p ′ ∗
A

~p ′ ∗
B

θ∗

2

⊥

‖
−→
boost

⊥

‖

~pA

~pB

~p ′
A

~p ′
B

It reads, for momentum pA,

EA = γE∗
A + γβp∗A‖ ,

pA‖ = γβE∗
A + γp∗A‖ = 0 ,

and thus

β = −
p∗A‖

E∗
A

.

For momentum pB, the boost reads

EB = γE∗
B + γβp∗B‖ ,

pB‖ = γβE∗
B + γp∗B‖ .

Thus, using the value of β and the fact that p∗B‖ = −p∗A‖, we get

EB = γ

(

E∗
B +

p∗2A‖

E∗
A

)

,

pB‖ = −γp∗A‖

(

E∗
B

E∗
A

+ 1

)

.

11



Besides, we have

p∗A⊥ = p∗A sin
θ∗

2
,

p∗A‖ = p∗A cos
θ∗

2
,

and of course p2A = p2A⊥ + p2A‖ and p2B = p2B⊥ + p2B‖ with pA⊥ = p∗A⊥ and pB⊥ = p∗B⊥ = −p∗A⊥.
Thus,

EB = γ

(

E∗
B +

p∗2A
E∗

A

cos2
θ∗

2

)

and

pB = p′B = p∗A

√

sin2
θ∗

2
+ γ2 cos2

θ∗

2

(

E∗
B

E∗
A

+ 1

)2

Note that equivalently, using EB =
√

m2

B + p2B, one can also write

EB = E ′
B =

√

√

√

√E∗2
B +

[

(

1 +
E∗

B

E∗
A

)2

γ2 − 1

]

p∗2A cos2
θ∗

2
, (24)

The direct connexion between these two formula for EB is not obvious and requires to use
the explicit expression of γ, namely γ = 1/

√

1− p∗2A /E∗2
A cos2 θ∗/2 in order to relate them.

5. Study the relative position of momenta ~pB and ~p
′

B with respect to the momenta ~pA and
~p

′

A, and justify the name "wall reference frame" given to the B reference frame.

Solution

The answer is obvious from the boost considered in the previous question, and the above
figure.
Still, let us exhibit directly the geometry of the scattering in the Breit’s frame, without
using this boost from the center-of-mass frame. Just like in the previous question, for
any momentum ~p, denote ~p⊥ the component along ~pA and ~p‖ the component orthogonal
to ~pA. Since ~pA + ~pB = ~p ′

A + ~p ′
B, and ~p ′

A = −~pA, we have ~p ′
B = ~pB + 2~pA, which im-

plies that ~p ′
B‖ = ~pB‖ and ~p ′

B⊥ = ~pB⊥ + 2~pA. From the fact that pB = p′B one should
thus have ~p ′

B⊥ = ±~pB⊥. Obviously, ~p ′
B⊥ = ~pB⊥ is impossible for a non vanishing ~pA,

so that ~p ′
B⊥ = −~pB⊥ = ~pB⊥ + 2~pA, i.e. ~pB⊥ = −~pA. In the Breit frame the scattering

thus looks like a scattering on a wall perpendicular to ~pA direction: ~pA get reversed, as
well as the component of ~pB along the direction of ~pA. It leads to the following geometry:

⊥

‖

~pA
~pB~p ′

A

~p ′
B
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6. Calculate the deflection angle of each particle as a function of the modulus of momenta.
One should in particular prove that the deflection angle φ of particle B is given by

cosφ = 1− 2
p2A
p2B

. (25)

Solution

The deflection angle of particle A is obviously (~pA, ~p
′
A) = π. Besides, from the following

figure:

⊥

‖

~pA
~pB~p ′

A

~p ′
B

φ

we see that sin φ

2
= pA

pB
and thus cosφ = 1− 2 sin2 φ

2
= 1− 2

p2
A

p2
B

.
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