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Relativistic Doppler effect and aberration of light

Notes:

- The subject is deliberately long. It is not requested to reach the end to get a good
mark!
- Space coordinates may be freely denoted as (x, y, z) or (x1, x2, x3).
- Any drawing, at any stage, is welcome, and will be rewarded!

1 Particle of arbitrary mass

We consider two frames K and K ′. The frame F ′ moves with respect to the frame F with a
velocity ~vF ′/F = ~βc along the z axis.

1. Assuming that a particle has a velocity ~v in the frame F , show that the velocity ~v
′
in the

frame F ′ is given by

v3′ =
v3 − β c

1− β v3

c

, (1)

v1′ =
1

γ

v1

1− β v3

c

, (2)

and similarly for v2′.
Hint: consider the differential of a boost, and use the fact that

∀i ∈ {1, 2, 3}, vi = c
dxi

dx0
and vi′ = c

dxi′

dx0′
.

Solution

A pure boost of rapidity φ along z can be written as

{

x0′ = γ x0 − γβ x3

x3′ = −γβ x0 + γ x3.

We thus have, through differentiation,

{

dx0′ = γ dx0 − γβ dx1

dx3′ = −γβ dx0 + γ dx3
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which gives, since dx0 = cdt and dx0′ = cdt′,

v3′ = c
dx3′

dx0′
= c

−γβdx0 + γdx3

γdx0 − γβdx3
=

v3 − β c

1− β v3

c

.

Besides,

v1′ = c
dx1′

dx0′
= c

dx1

γdx0 − γβdx3
=

1

γ

v1

1− β v3

c

,

and similarly for v2′.

2. Consider a particle of velocity ~v in a frame K, with spherical coordinates (v, θ, ϕ) with
respect to the above z-axis used to defined the boost from F to F ′. We now observe the par-
ticle in the frame K ′. Its velocity ~v

′
is described using the spherical coordinates (v′, θ′, ϕ′)

defined in the same (x, y, z) reference system.

(a) Why does it make sense to use the same system of coordinates for both F and F ′ frames?

Solution

The boost from F to F ′ does not change the axis directions x, y and z.

(b) It is convenient to separate the transverse and the longitudinal velocity with respect to
the direction z of the boost, as ~v = ~v‖ + ~v⊥ where ~v‖ is along the z−axis and ~v⊥ is in the xy
plane. Express ~v

′

‖ and ~v
′

⊥ in terms of ~v‖, ~v⊥, β, γ and c.

Solution

From the question 1, we get

~v
′

⊥ =
1

γ

~v⊥

1−
v‖
c
β

v′‖ =
v‖ − βc

1−
v‖
c
β

(c) Change of the magnitude of the velocity.

(i) Show that

(

1−
v′ 2

c2

)

(

1−
v‖
c
β
)

=

(

1−
v2

c2

)

(

1− β2
)

. (3)

Solution
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Since

~v
′

⊥ =
1

γ

~v⊥

1−
v‖
c
β

v′‖ =
v‖ − βc

1−
v‖
c
β

we have

v′ 2 =
1

(

1−
v‖
c
β
)2

[

v2⊥(1− β2) + (v‖ − βc)2
]

so that

1−
v′ 2

c2
=

1
(

1−
v‖
c
β
)2

[

(

1− v‖
β

c

)2

−
v2⊥
c2

(1− β2)−
(v‖
c
− β

)2

]

and thus
(

1−
v′ 2

c2

)

(

1−
v‖
c
β
)2

= 1− β2 −
v2‖
c2
(1− β2)−

v2⊥
c2

(1− β2) =

(

1−
v2

c2

)

(1− β2) .

(ii) Show that if v 6 c, this remains true in any frame boosted by a velocity βc 6 c. What
about the special case of v = c?

Solution

From Eq. (3) one immediately sees that v′ 6 c if β 6 1 and v 6 c. In particular, if v = c,
then v′ = c : the speed of light does not depend on the frame.

(d) Transformation of the direction of the particle velocity.

(i) Write the expressions of ~v⊥ and v‖ as functions of v, ϕ, θ in the frame F , and provide the
corresponding expressions in the frame F ′.

Solution

In spherical coordinates, on can write in the frame F :

~v⊥ = v sin θ [cosϕ~ux + sinϕ~uy] ,

v‖ = v cos θ ,

and similarly in the frame F ′:

~v
′

⊥ = v sin θ′ [cosϕ′ ~ux + sinϕ′ ~uy] ,

v′‖ = v cos θ′ .
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(ii) What is the relation between ϕ and ϕ′?

Solution

The boost changes the magnitude of vx and vy with the same amount, indeed ~v
′

⊥ and ~v⊥ are
collinear, therefore ϕ is invariant.

(iii) Give the expression of sin θ′, cos θ′ as functions of v, v′, β and γ. Check that

tan θ′ =
1

γ

v sin θ

v cos θ − βc
. (4)

Solution

From the expressions obtained for ~v
′

‖ and ~v
′

⊥ one gets

sin θ′ =
1

γ

v

v′
sin θ

1− v
c
β cos θ

cos θ′ =
v

v′
cos θ − βc/v

1− v
c
β cos θ

from which the expression given for tan θ′ is obvious.

2 Photon

We now consider the case of a photon. We again consider the two frames F and F ′ related
by the same above boost along the z−axis.

1. Write the expression of sin θ′, cos θ′ and tan θ′. One should in particular check that

tan θ′ =
1

γ

sin θ

cos θ − β
. (5)

The change of θ to θ′ is known under the name of aberration of light.

Solution

The speed of light does not depend on the frame. One should just replace v by c in the
expressions obtained in the previous question, which give

sin θ′ =
1

γ

sin θ

1− β cos θ

cos θ′ =
cos θ − β

1− β cos θ

and

tan θ′ =
1

γ

sin θ

cos θ − β
.
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2. Boost of the photon momentum

(a) Write the way a photon of 4-momentum k = (k0, ~k) is transformed into k′ = (k0′ , ~k
′
)

under the boost from F to F ′, separating ⊥ and ‖ components. Introduce the angles θ and
θ′.

Solution

First of all, for a photon, k0 = ‖~k‖. Therefore,

k0′ = γ k0 − β γk3 = k0γ(1− β cos θ)

~k
′

⊥ = ~k⊥

k′
‖ = −β γ k0 + γk‖ = k0γ(cos θ − β) = k0

′

cos θ′

with

‖~k⊥‖ = ‖~k‖ sin θ = k0 sin θ

‖~k
′

⊥‖ = ‖~k
′

‖ sin θ′ = k0
′

sin θ′ .

(b) Relate θ′ and θ and check the consistency with the results obtained in the question 2.1.

Solution

From the above result we get immediately

sin θ′ =
1

γ

sin θ

1− β cos θ

cos θ′ =
cos θ − β

1− β cos θ .

which are hopefully identical with the results obtained from the transformation of the veloc-
ity.

(c) Show that the change of frequency of the photon under the above boost is given by

ν ′ = ν
1− β cos θ
√

1− β2
. (6)

Solution

Since k0 = hν we get

ν ′ = ν
1− β cos θ
√

1− β2
.
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3. A few particular cases

(a) Discuss the cases θ = 0, θ = π
2

and θ = π, both for the aberration of light and for the
frequency. Comment in each case whether there is a blue shift or a red shift.

Solution

Case θ = 0 :

ν ′ = γ(1− β)ν = ν

√

1− β

1 + β

and θ′ = θ = 0. The photon does not face aberration, and its frequency decreases, leading
to a red-shift effect.

Case θ = π
2
:

ν ′ = γν =
ν

√

1− β2

and sin θ′ = 1/γ, cos θ′ = −β .

~k~k
′

~v

The photon faces aberration, and its frequency increases, leading to a blue-shift effect.

Case θ = π :

ν ′ = γν(1 + β) = ν

√

1 + β

1− β

and θ′ = θ = π. The photon does not face aberration, and its frequency increases, leading to
a blue-shift effect.

(b) Show that there is a particular angle θ for which the photon frequency is unchanged.
What is the aberration in this case?

Solution
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Writing ν ′ = ν leads to γ(1− β cos θ) = 1 so that sin θ′ = sin θ. Besides, we have

cos θ =
γ − 1

γβ
.

We thus gets

cos θ′ = γ(cos θ − β) =
γ − 1

β
− γβ =

γ(1− β2)− 1

β
=

1/γ − 1

β
=

1− γ

γβ
= − cos θ

so that the light beam gets symmetrized with respect to the plane perpendicular to the
z−axis. As expected, this angle θ is between 0 and π/2.

4. Forward cone.

(a) Show that any light propagating outside a forward cone in the frame F will appear to
propagate backward in the frame F ′. Express the half-opening angle of this cone in term of
β.

Solution

We have cos θ′ < 0 for θ satisfying 1−β cos θ < 0 i.e. θ > θcone = arccos β. Thus, any photon
propagating outside this forward cone will look like propagating backward.

(b) Show that this half-opening angle in the ultra-relativistic limit β → 1 is given by

θcone ∼
1

γ
. (7)

Solution

When β → 1,

tan θ =
sin θ

cos θ
∼

1− β2

β
∼

1

γβ
∼

1

γ

with tan θ ∼ θ since θ ≪ 1, so that θcone ∼
1

γ
.

(c) What would be the consequence for an hypothetical interstellar traveler moving at a
speed close to the light speed?

Solution

Following the above discussion, in an hypothetical interstellar journey, the traveler would
have the feeling to see the celestial sphere on his back to be just in front of him, because of
the aberration of light, except for the part almost exactly on his back, so that he would have
the feeling to move backward, toward his past landscape!
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5. We consider the non-relativistic limit β ≪ 1.

(a) Show that the aberration angle ∆θ = θ′ − θ is then given by

∆θ = β sin θ . (8)

Solution

In the limit β ≪ 1, γ ∼ 1, with a quadratic correction in β. Three possible reasonings:

(i) from the expression of cos θ′ :

On the one hand, from the differential of cos θ,

∆cos θ′ ∼ − sin θ∆θ

and on the other hand

cos θ′ ∼ (cos θ − β)(1 + β cos θ) + o(β2) ∼ cos θ − β sin2 θ + o(β2)

so that

∆θ ∼ β sin θ .

(ii) from the expression of sin θ′ :

On the one hand, from the differential of sin θ,

∆sin θ′ ∼ cos θ∆θ

and on the other hand

sin θ′ ∼ sin θ(1 + β cos θ) + o(β)

and thus

cos θ∆θ ∼ cos θ β sin θ .

One should distinguish the particular situation θ = π
2

(which as expected is a spurious
singularity, see below the special discussion) from θ 6= π

2
:

if θ 6= π
2
,

∆θ ∼ β sin θ .

The case θ = π
2

gives on the one hand

∆sin θ′ ∼ 1−
(∆θ)2

2
+ o

(

(∆θ)2
)
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and on the other hand, keeping the quadratic term in β coming from γ,

sin θ′ ∼ 1−
β2

2
+ o(β2)

i.e.

∆θ ∼ β

which enters the afore obtained general formula for ∆θ.

(iii) from the expression of tan θ′:

Again, a spurious singularity for θ = π
2

appears. First, assuming θ different from π/2,

tan θ′ ∼
1

γ

sin θ

cos θ − β
∼ tan θ

1

1− β
cos θ

∼ tan θ

(

1 +
β

cos θ

)

∼ tan θ +
β sin θ

cos2 θ
.

Besides, from the differential of tan θ,

∆tan θ ∼
∆θ

cos2 θ

so that combining both expression reads

∆θ ∼ β sin θ .

The special case θ = π
2

gives on the one hand

tan θ′ ∼ −
1

∆θ

and on the other hand

tan θ′ ∼ −
1

β

so that

∆θ ∼ β

which enters the afore obtained general formula for ∆θ.

(b) Show that this result can be obtained when performing a classical galilean change of
frame.

Solution
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Starting from

~v/F = ~v/F ′ + ~vF ′/F ,

θ′ θ

θ~v/F ′

~vF ′/F

~v/F

we thus have, using the fact that in the non-relativistic limit βc = vF ′/F = v ≪ vF = vF ′ = c,

v sin θ ∼ |θ′ − θ|c

so that

∆θ ∼
v

c
sin θ .

Another way is to start from

~v/F = ~v/F ′ + ~vF ′/F ,

which implies that

~v 2

/F = ~v 2

/F ′ + 2~v/F ′ · ~vF ′/F + ~v 2

F ′/F

and that

‖~v/F ′ ∧ ~v/F‖ = ‖~v/F ′‖‖~v/F‖| sin(θ
′ − θ)| .

Besides, one has

~v/F ∧ ~v/F ′ = ~vF ′/F ∧ ~v/F ′ ,

and thus

‖~v/F ′ ∧ ~v/F‖ = ‖~vF ′/F ∧ ~v/F ′‖ = ‖~v/F ′‖‖~vF ′/F‖ | sin θ
′| .

In the limit ‖~v/F‖ ≫ ‖~vF ′/F‖ we therefore have ‖~v/F ′‖ ∼ ‖~v/F‖ and equating the two obtained
expressions for ‖~v/F ′ ∧ ~v/F ‖, | sin(θ

′ − θ)| ∼ |θ′ − θ| ≪ | sin θ′| ∼ | sin θ| so that restoring the
signs, we have algebraically (v is the projection of ~vF ′/F on ~uz):

∆θ ∼
v

c
sin θ′ ∼

v

c
sin θ .
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3 Aberration of light in astronomy (Bonus)

1. We assume that a star is at rest with respect to the Sun. A telescope points in the direction
of this star. We denote the direction of the instant motion of Earth with respect to Sun as
z.

1 2

~v z

α′

α

In the rest frame of the Sun, the star is in the position (1), and α is the angle with respect
to the axis z toward which the telescope should be pointed if fixed with respect to the Sun.
Due to the motion of Earth with respect to the Sun, the star seems to be in the position (2)
and α′ is the real angle (i.e. in the rest frame of the Earth at instant time) toward which the
telescope should be pointed. Note: the average distance between Sun and Earth is 150 · 106

km (one astronomical unit).

(i) Discuss the importance of relativistic effect with respect to the classical one.

Solution

We have

v = Rω = 150 · 109
2π

365× 24× 3600
≃ 30 · 103 m/s ,

and thus β = v/c = 30 · 103/(3 · 108) ≃ 1.0 · 10−4, with

γ =
1

√

1− β2
∼ 1 +

β2

2
≃ 1 +

10−8

2

therefore the relativistic effects are completely negligible.

(ii) Show that the exact expression of tanα′ as observed by the telescope, as a function of α
and vEarth, is given by

tanα′ =
1

γ

sinα

cosα + vEarth

c

. (9)

Solution
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Since light is now traveling from the star toward the telescope, one can simply perform the
transformation

θ → π − α

θ′ → π − α′

in above obtained formula (5) for tan θ′ to get

tanα′ =
1

γ

sinα

cosα + vEarth

c

(iii) Give a suitable approximation for α′ − α.

Solution

From the approximated relation (8) and again using

θ → π − α

θ′ → π − α′

we get

α− α′ ∼
vEarth
c

sinα ∼
vEarth
c

sinα′ .

2. We assume that the star is asymptotically far from the Sun. We recall that the ecliptic is
the plane of Earth’s orbit around the Sun.

(a) For which angle with respect to the direction of motion of Earth with respect to Sun is
the aberration angle maximal? Compute numerically (as a precise fraction of degrees) this
maximum aberration angle ∆θ.

Solution

The aberration is maximal for θ = π
2
. The aberration angle is then ∆θ = vEarth

c
. One gets

∆θ = 1.0 · 10−4 rad ≃ 0.0057◦ ≃ 20, 6′′ .

(b) What is the numerical difference of the two observed angles for a star of maximal aber-
ration when performing two measurements separated by half a year?

Solution

Half a year after a first measurement, vEarth gets reversed, therefore ∆θ is opposite, and thus
there is roughly 41′′ between the two measured angles.
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(c) Describe the phenomena seen over a year in the case of a star:

(i) in the ecliptic, therefore with 0◦ ecliptic latitude.

Solution

In this case, the observed trajectory of the star is a segment of opening angle 41′′.

(ii) at the pole of the ecliptic, therefore with 90◦ (north ecliptic pole) or −90◦ ecliptic latitude
(south ecliptic pole).

Solution

In this case, the observed trajectory of the star is a circle of opening angle 41′′.

(iii) for an arbitrary star.

Solution

In the general case, both ecliptic latitude and ecliptic longitude oscillate with a period of
one year, and an amplitude depending on the medium ecliptic latitude and longitude of the
star, with a maximal amplitude of 20.5′′: therefore the observed variation of the position of
the star is an ellipse.

(c) The phenomenon of parallax is well known: a rather close object seems to move when you
observe it either from your right eye or from you left eye. More generally, it is the difference
in the apparent position of an object viewed along two different lines of sight. Compare
the aberration effect discussed previously with the parallax effect due to the fact that the
observation angle of a nearby star (typically of the order of a few light-year (ly) from us;
Proxima Centaurus is at 4.24 ly) varies when observed at two times separated by half a year.

Solution

Approximating the tangent by the angle for small angles, the parallax angle αp is given by

αp =
d

dSun−Earth
≃

150 · 109

365× 24× 3600× 4.24× 3 · 108
≃ 3.7 · 10−6 rad ≃ 0.00021◦ ≃ 0.77′′ ,

which is very small with respect to the aberration angle.

(d) Explain why this allowed to perform one of the very first measurement of the speed of
light (James Bradley, 1729), although limited by the precision on the Sun-Earth distance,
by an astronomical measurement of γ-Draconis (∼ 148 light-year from us), which is almost
at the north ecliptic pole.
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Solution

The parallax effect was expected and looked for, as a clear proof of heliocentrism, already at
the end of XVIth century. Several measurements were done. The first very first precise and
convincing measurement was done by James Bradley, and looked incomprehensible. Let us
see why.
With our modern understanding, it turns out that in each of the two directions (say semi-
major and semi-minor axes), parallax is maximal when aberration vanishes. Indeed in the
approximation of a circular orbit, which is almost the case for the movement of Earth around
Sun, the speed of Earth (responsible for aberration) and Sun-Earth radial direction (respon-
sible for parallax) are orthogonal to each other. As we have seen, the parallax effect never
exceeds 1′′, which is negligible with respect to the aberration angle, of 20′′. For far distant
stars, like γ-Draconis, there is even no parallax effect, but aberration remains, and are thus
odd with parallax. This was exactly the outcome of the measurement done by James Bradley.
It took him several years before he could understand and interpret correctly his observations.
After he correctly interpreted his measurements, he could then extract the speed of light, as
function of the Sun-Earth distance.
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