M1 General Physics 2021-2022
Major PNU '
Particles

Final exam: session 2

March 24th 2022

Documents allowed

Notes:
- Space coordinates may be freely denoted as (z,y, 2) or (z', 22, z%).
- One may always assume that fields are rapidly decreasing at infinity.

1 Muon decay

A muon is a heavy lepton, of mass m, = 105 MeV. Its mean life-time is 7 = % = 2.21075s.
Muons are created in the upper atmosphere when cosmic rays collide with air molecules.

1. Consider a muon of energy 17 GeV. What fraction of the light velocity does it carry, as
seen by an observer on Earth?

Solution

From E, = ~,m, one gets vy, ~ 162. From the expression

1

2
Vi

c2

T =

one gets

Nz
VT2 L 999998 c.

v = C
“w
Y

2. What is the mean life-time of such a muon, again as seen by an observer on Earth?

Solution

From the time dilation formula, one has Tgarn = 7, 7, ~ 3.56 X 1074,

3. Out of a million particles produced at altitude 50 km with the above energy, how many
will reach the Earth before decaying?

Solution




The muons travel a distance d = 50 km, at a velocity 0.99998 c. This takes a time tgan =
d/v, =5 % 10*/(0.99998 x 3 x 10%) ~ 1.67 x 10~*s. Using the formula describing the decay
of muons in the Earth frame

N(t) — N(O)eftEarth/TEarth
one thus gets, at ground level,
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4. Compare this result with the one obtained in a non-relativistic treatment. Comment.

Solution

In a non-relativistic treatment, there is no time dilation, therefore
Nnon—relativistic (t) - N(())e_tEarth/T#
and one thus gets, at ground level,
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2 Nonrelativistic Lagrangian

The complex scalar field (7, t) in the nonrelativistic approximation has a Lagrangian
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where m > 0 is the particle mass, h the reduced Planck constant and U(7,t) is the potential
field in which the particle propagates.

1. Derive the two equations of motion for (7, t) and ¢*(7,t) from the Lagrangian (1) and
interpret them.

Solution

Treating ¢ and ¥* as two independent fields, the two Euler Lagrange equations read
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so that finally one gets the two complex conjugated equations
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which is the Schrodinger equation and its complex conjugated form.

2. Hamiltonian
a. Construct the Hamiltonian function density H using the Lagrangian.

Solution

One should perform a Legendre transformation of the Lagrangian density, i.e.
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b. Calculate the total field energy and comment.

Solution




The total field energy is

H:/Hd3x:/w(—%v2—l—U>wd3x, (2)

where we have used a partial integration on the assumption that ¢» — 0 as r — oco. It
coincides with the quantum mechanical average value of the particle’s energy.

c. Propose the quantum interpretation of the result thus obtained, in the case of a time
independent potential.

Solution

If the potential energy U(7) is time independent and the particle is in a state with a definite
energy, that is, Hy = F with the usual quantum mechanical Hamiltonian operator
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obviously one gets H = E. Thus, the energy calculated by the formulas of field theory as
the integral over the entire three-dimensional space of the energy density coincides with the
energy of a quantum particle.

3. The Schrodinger equation for the wave function (7, t) of a spin-free nonrelativistic particle
of charge ¢ has the form
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where A(7,t) and (7, t) are the electromagnetic potentials (specified real functions).

a. Guess the Lagrangian leading to (3).
Hint: rely on the covariant derivative D =V — ;2 A and on the guess of the potential U.

Solution

Obviously, one should consider the Lagrangian obtained from (1) by performing the minimal
replacement vV — D and U = qp, i.e.
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b. Show in detail that the equation of motion of this Lagrangian is indeed the Schrodinger
equation (3).

Solution
First,
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Combining these results, the Euler-Lagrange equations read
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Besides, since
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the Schrédinger equation can be rewritten as
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while its complex conjugated form reads
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These two equations are exactly the Euler-Lagrange equations obtained above.




