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QCD in the perturbative Regge limit

One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s≫ −t
Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

h1(M
2
1 )

h2(M
2
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s→

t
↓

← vacuum quantum
number
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′2
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′2
2 )

hard scales: M2
1 , M

2
2 ≫ Λ2

QCD or M ′2
1 , M

′2
2 ≫ Λ2

QCD or t≫ Λ2
QCD

where the t−channel exchanged state is the so-called hard Pomeron

Inclusive processes: the above picture applies at the level of cross-sections
(optical theorem ⇒ t = 0)

Diffractive processes: gap in rapidity between two clusters in the detector.
The above picture applies at the level of amplitudes
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How to test QCD in the perturbative Regge limit?

What kind of observable?

perturbation theory should be applicable:
selecting external or internal probes with transverse sizes ≪ 1/ΛQCD

(hard γ∗, heavy meson (J/Ψ, Υ), energetic forward jets) or by choosing
large t in order to provide the hard scale.

governed by the rapidity divergences of perturbative QCD

p+ → 0

+

and not by its collinear dynamics

m = 0

m = 0
θ → 0

=⇒ select semi-hard processes with s≫ p2Ti ≫ Λ2
QCD where p2Ti are

typical transverse scale, all of the same order.
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Quark and gluon content of proton

The various regimes governing the perturbative content of the proton

2
ln Q

Y=ln 
x

B
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ln ln QCD
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BFKL

DGLAP

BK JIMWLK

ln Q (Y)
2

s

SATURATION

REGION

e.g.: DIS

“usual” regime: xB moderate ( xB & .01):
Evolution in Q governed by the QCD renormalization group
(Dokshitser, Gribov, Lipatov, Altarelli, Parisi equation)

∑

n(αs lnQ2)n + αs

∑

n(αs lnQ2)n + · · ·
LLQ NLLQ

perturbative Regge limit: sγ∗p →∞ i.e. xB ∼ Q2/sγ∗p → 0
in the perturbative regime (hard scale Q2)
(Balitski Fadin Kuraev Lipatov equation)

∑

n(αs ln s)n + αs

∑

n(αs ln s)n + · · ·
LLs NLLs 4 / 39
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Quark and gluon content of proton

The various regime governing the perturbative content of the proton

ln Λ2
QCD lnQ2

Y = ln 1
xBj

lnQ2
s(Y )

BK-JIMWLK

BFKL

DGLAP

saturation region

linear regime
C
o
n
fi
n
em

en
t

to handle with saturation effects:

one should resum powers of α2
sA

1/3

typical order of magnitude of dipole-dipole scattering between a dipole probe and a dipole inside a large nucleus A

through 2-gluon exchange
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High energy: Regge limit
Non-linear perturbative regime and Color Glass Condensate

Gluonic saturation

αs ≪ 1: weak coupling ⇒ perturbative approach

very dense system: very high occupation numbers
⇒ gluons can recombine

characteristic scale: saturation for Q2 . Q2
s(x)

number of gluons per surface unit:

ρ ∼
xGA(x,Q2)

πR2
A

recombination cross-section:

σgg→g ∼
αs

Q2

effects are important when ρ σgg→g & 1

i.e. Q2 . Q2
s with Q2

s ∼
αs xGA(x,Q2

s)

πR2
A

∼ A1/3x−0.3
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Gluonic saturation
Experimental future

Gluonic saturation with a perturbative control

At EIC, the saturation scale Qs

will be in the perturbative range

Q2
s ∼

(

A

x

)1/3

Moderate center of mass energy
Compensated by large A

Large perturbative domain

Λ2
QCD ≪ Q2 ≪ Q2

s

in which saturation is under
control
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Kinematics

p1

p2

p1 = p+n1 − Q2

2p+
n2

p2 =
m2

t

2p−2
n1 + p−2 n2

p+ ∼ p−2 ∼
√

s

2

Lightcone Sudakov vectors

n1 =

√

1

2
(1, 0⊥, 1), n2 =

√

1

2
(1, 0⊥,−1), (n1 · n2) = 1

Lightcone coordinates:

x = (x0, x1, x2, x3)→ (x+, x−, ~x )

x+ = x− = (x · n2) x− = x+ = (x · n1)
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Rapidity separation

∼ p+n1

∼ p−n2

k+ < eηp+

k+ > eηp+

Let us split the gluonic field between "fast" and "slow" gluons

Aµa(k+, k−,~k ) = Aµa
η (|k+| > eηp+, k−,~k ) quantum part

+ bµaη (|k+| < eηp+, k−,~k ) classical part

eη ≪ 1
⇒ effective field theory I. Balitsky 1996
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Large longitudinal boost to the projectile frame

Large longitudinal boost: Λ ∝ √s

∼ p+n1

∼ p−n2

boost−−−→

∼ p+n1

∼ p−n2

bµ(x) −→ b−(x)nµ
2 ≃ δ(x+)B(~x )nµ

2

just like usual boost of (~E, ~B) or Aµ in electrodynamics Shockwave approximation

b−(x)nµ
2 : background field

Light-cone gauge: n2 ·A = 0

⇒ b · A = 0 which leads to simple Feynman rules in this effective field theory.
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Multiple interactions with the target = Propagator in the shockwave field

Multiple interactions with the target can be resummed into path-ordered
Wilson lines attached to each parton crossing lightcone time 0:

Ui = U~zi = U (~zi, η) = P exp

[

ig

∫ +∞

−∞

b−η (z
+
i , ~zi) dz

+
i

]

Ui = 1+ ig

∫ +∞

−∞

b−η (z+i , ~zi)dz
+
i +(ig)2

∫ +∞

−∞

b−η (z+i , ~zi)b
−
η (z+j , ~zj)θ

(

z+ji

)

dz+i dz+j + · · ·
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Factorized picture in the projectile frame

Factorized amplitude

〈P | |P ′〉

z1

z2

Aη =

∫

dD−2~z1d
D−2~z2 Φ

η(~z1, ~z2 ) 〈P ′|[Tr(Uη
~z1
Uη†

~z2
)−Nc]|P 〉

Dipole operator Uη
ij = 1

Nc
Tr(Uη

~zi
Uη†

~zj
)− 1

Written similarly for any number of Wilson lines in any color representation
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Evolution for the dipole operator

B-JIMWLK hierarchy of equations
[I. Balitsky, J. Jalilian-Marian, E. Iancu, L. McLerran, H. Weigert, A. Leonidov, A. Kovner]

∂ Uη
12

∂η
=

αsNc

2π2

∫

d~z3
~z 2
12

~z 2
13~z

2
23

[Uη
13 + Uη

32 − Uη
12 + Uη

13 Uη
32 ]

∂ Uη
13 Uη

32

∂η
= ...

double dipole contribution

dipole contribution
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Evolution for the dipole operator
Mean field approximation

Mean field approximation

↔ close connection with Mueller dipole’s model 1994-1995 (large NC)
(obtained using light-front quantization)

⇒ BK equation [I. Balitsky, 1995] [Y. Kovchegov, 1999]

∂〈Uη
12〉

∂η
=
αsNc

2π2

∫

d~z3
~z 2
12

~z 2
13~z

2
23

[〈Uη
13〉+ 〈Uη

32〉 − 〈Uη
12〉 − 〈Uη

13〉 〈Uη
32〉]

Non-linear term : saturation
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The JIMWLK Hamiltonian

Hamiltonian formulation of the hierarchy of equations

For an operator built from n Wilson lines, the JIMWLK evolution is given at
LO accuracy by

∂

∂η

[

Uη
~z1
...Uη

~zn

]

=
n
∑

i,j=1

Hij ·
[

Uη
~z1
...Uη

~zn

]

,

JIMWLK Hamiltonian

Hij =
αs

2π2

∫

d~zk
~zik · ~zkj
~z2ik~z

2
kj

[T a
i,LT

a
j,L + T a

i,RT
a
j,R − Uab

~zk
(T a

i,LT
b
j,R + T a

j,LT
b
i,R)]
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Theoretical status
Evolution equations

Kwown pieces of the evolution beyond leading accuracy

Explicit NLO dipole operator evolution [I. Balitsky, G. Chirilli 2007]

Explicit NLO 3-point operator evolution [I. Balitsky, Grabovsky 2014]

Explicit NLO 4-point operator evolution [A. Grabovsky 2015]

Complete NLO JIMWLK Hamiltonian [A. Kovner, M. Lublinsky, Y. Mulian
2013]

Additionnal resummation of collinear logarithms [E. Iancu, J. Madrigal,
A. Mueller, G. Soyez, D. Triantafyllopoulos 2015], improved kinematics
[Beuf 2015]

Progress towards a more moderate-x extension [I. Balitsky, B. Tarasov
2015]

Progress towards "Next-to-Eikonal" and "Next-to-Next-to-Eikonal"
corrections for nucleus targets [T. Altinoluk, N. Armesto, G. Beuf,
M. Martinez, A. Moscoso, C. Salgado 2014]

Extensions to spin dependent distributions [F. Cougoulic, Y. Kovchegov,
B. Tarasov, Y. Tawabutr 2022]
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Practical use of the formalism

Compute the upper impact
factor using the effective
Feynman rules

Build non-perturbative models
for the matrix elements of the
Wilson line operators acting on
the target states

Solve the B-JIMWLK evolution
for these matrix elements with
such non-perturbative initial
conditions at a typical target
rapidity Y0.

Evaluate the solution at a typical
projectile rapidity Y , or at the
rapidity of the slowest gluon

Convolute the solution and the
impact factor

〈B| |B′〉

z1

zn

Y

Y0

A =

∫

d~z1...d~zn Φ(~z1, ..., ~zn)

×〈P ′|U~z1 ...U~zn |P 〉

Exclusive diffraction allows one to
probe the b⊥-dependence of the
non-perturbative scattering amplitude
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Probing QCD in the Regge limit and towards saturation

Observables to probe small−x QCD and saturation physics

Perturbation theory should apply : a hard scale Q2 is required

One needs semihard kinematics : s≫ p2T ≫ Λ2
QCD where all the typical

transverse scales pT are of the same order

Saturation is reached when Q2 ∼ Q2
s ∝

(

A
x

) 1
3 : the smaller x ∼ Q2

s
is and

the heavier the target ion, the easier saturation is reached.
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Known NLO impact factors

Known NLO BFKL impact factors

γ∗ → γ∗ [J. Bartels, D. Colferai, S. Gieseke,
A. Kyrielis, C. Qiao 2001]

Forward jet production [J. Bartels, D. Colferai,
G. Vacca 2003; F. Caporale, D. Ivanov,
B. Murdaca, A. Papa, A. Perri 2011;
G. Chachamis, M. Hentschinski, J. Madrigal,
A. Sabio Vera 2012]

Inclusive production of a pair of hadrons
separated by a large interval of rapidity
[D. Ivanov, A. Papa 2012]

Diffractive γ∗
L → VL in the forward limit

[D. Ivanov, I. Kotsky, A. Papa 2004]

Higgs production [F. G. Celiberto, D. Ivanov,
M. Fucilla, M. Mohammed, A. Papa 2022]

KBFKL

19 / 39



Introduction The shockwave approach Various diffractive processes in the shockwave approach

Known NLO impact factors

Known NLO CGC impact factors

〈P | |P ′〉

z1

z2

γ∗ → γ∗ [I. Balitsky, G. Chirilli, 2011]; in the wave function approach [G. Beuf
2016]

Single inclusive particle production [G. Chirilli, B.-W. Xiao, F. Yuan 2012]

Exclusive diffractive electro- and photo- production of a forward dijet
[R. Boussarie, A. Grabovsky, L. Szymanowski, S.W. 2016]

γ
(∗)
L,T → VL [R. Boussarie, A. Grabovsky, D. Ivanov, L. Szymanowski, S.W. 2017]

inclusive photon+dijet production in e+A DIS [K. Roy, R. Venugopalan 2019]

Dijet impact factor in DIS [R. Venugopalan, F. Salazar, P. Caucal 2021]

γ∗ → γ∗ with massive quarks in the wave function approach [G. Beuf, T. Lappi,
R. Paatelainen 2021]

Dijet impact factor in DIS [R. Venugopalan, F. Salazar, P. Caucal 2021]

Semi-inclusive diffractive electro- and photo- production of a pair of hadrons at
large pT [M. Fucilla, A. Grabovsky, E. Li, L. Szymanowski, S.W. 2022]

Semi-inclusive diffractive electro- and photo- production of a single hadron at
large pT [M. Fucilla, A. Grabovsky, E. Li, L. Szymanowski, S.W. 2023, to appear]
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Practical implementation for diffractive processes
Framework

We are using the following framework:

Regge-Gribov limit : s≫ (hard scale)2 ≫ Λ2
QCD

hard scale:
Q2

t
Diffractive mass of a dijet system
pT of produced hadrons

Otherwise completely general kinematics ⇒ connection with Wigner
distributions

Shockwave (CGC) Wilson line approach

Longitudinal cutoff: |p+g | > αp+γ

Transverse dimensional regularization: d = 2 + 2ε
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Various diffractive processes in the shockwave approach
LO open qq̄ production

pγ

pq̄

pq

~p1

~p2

z0

A = δ(p+q + pq̄ − p+γ )
∫

dd~p1d
d~p2δ(~pq + ~pq̄ − ~pγ − ~p1 − ~p2)Φ0(~p1, ~p2 )

×CF

〈

P ′
∣

∣ Ũα(~p1, ~p2) |P 〉

Ũα(~p1, ~p2) =
∫

dd~z1d
d~z2 e

−i(~p1·~z1)−i(~p2·~z2)[ 1
Nc

Tr(Uα
~z1
Uα†

~z2
)− 1] Target

22 / 39



Introduction The shockwave approach Various diffractive processes in the shockwave approach

Various diffractive processes in the shockwave approach
NLO open qq̄ production

Virtual corrections

Diagrams contributing to the NLO correction
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Various diffractive processes in the shockwave approach
First kind of virtual corrections

Virtual corrections (1)

pγ

pq̄

pq

~p1

~p2

l

pγ

pq̄

pq

~p1

~p2

l
pγ

pq̄

pq

~p1

~p2

A(1)
NLO ∝ δ(p

+
q + pq̄ − p+γ )

∫

dd~p1d
d~p2δ(~pq + ~pq̄ − ~pγ − ~p1 − ~p2) ΦV 1(~p1, ~p2 )

×CF

〈

P ′
∣

∣ Ũα(~p1, ~p2) |P 〉
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Various diffractive processes in the shockwave approach
Second kind of virtual corrections

Virtual corrections (2)

pγ

pq̄

pq

~p1

~p2

~p3

pγ

pq̄

pq

~p1

~p2

~p3

A(2)
NLO ∝ δ(p+q + pq̄ − p+γ )

∫

dd~p1d
d~p2d

d~p3δ(~pq + ~pq̄ − ~pγ − ~p1 − ~p2 − ~p3)

×[Φ′
V 1(~p1, ~p2 )CF

〈

P ′
∣

∣ Ũα(~p1, ~p2) |P 〉 dipole contribution

+ΦV 2(~p1, ~p2, ~p3 )
〈

P ′
∣

∣ W̃(~p1, ~p2, ~p3) |P 〉 ] double dipole contribution
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Various diffractive processes in the shockwave approach
LO open qq̄g production

Real corrections

→ pγ

ւ
p2

տ
p1

տ
p3

pq̄

pg

pq

A(2)
R ∝ δ(p+q + pq̄ + p+g − p+γ )

∫

dd~p1d
d~p2d

d~p3δ(~pq + ~pq̄ + ~pg − ~pγ − ~p1 − ~p2 − ~p3)

×[Φ′
R1(~p1, ~p2 )CF

〈

P ′
∣

∣ Ũα(~p1, ~p2) |P 〉
+ΦR2(~p1, ~p2, ~p3 )

〈

P ′
∣

∣ W̃(~p1, ~p2, ~p3) |P 〉 ]

A(1)
R ∝ δ(p+q + pq̄ + p+g − p+γ )

∫

dd~p1d
d~p2δ(~pq + ~pq̄ + ~pg − ~pγ − ~p1 − ~p2)

×ΦR1(~p1, ~p2 )CF

〈

P ′
∣

∣ Ũα(~p1, ~p2) |P 〉
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Various diffractive processes in the shockwave approach
Various type of divergences

Divergences

Rapidity divergence p+g → 0 ΦV 2Φ
∗
0 + Φ0Φ

∗
V 2

UV divergence ~p 2
g → +∞ ΦV 1Φ

∗
0 + Φ0Φ

∗
V 1

Soft divergence pg → 0 ΦV 1Φ
∗
0 + Φ0Φ

∗
V 1,ΦR1Φ

∗
R1

Collinear divergence pg ∝ pq or pq̄ ΦR1Φ
∗
R1

Soft and collinear divergence pg =
p+g

p+q
pq or

p+g

p+q̄
pq̄, p

+
g → 0 ΦR1Φ

∗
R1
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Various diffractive processes in the shockwave approach
Rapidity divergence

Double dipole virtual correction ΦV 2

B-JIMWLK evolution of the LO term : Φ0 ⊗KBK
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Various diffractive processes in the shockwave approach
Rapidity divergence

B-JIMWLK equation for the dipole operator

∂Ũα
12

∂ lnα
= 2αsNcµ

2−d
∫

dd~k1d
d~k2d

d~k3

(2π)2d
δ(~k1 + ~k2 + ~k3 − ~p1 − ~p2)

(

Ũ
α
13Ũ

α
32 + Ũ

α
13 + Ũ

α
32 − Ũ

α
12

)

×









2
(~k1 − ~p1) · (~k2 − ~p2)

(~k1 − ~p1)2(~k2 − ~p2)2
+

π
d
2 Γ(1 − d

2
)Γ2( d

2
)

Γ (d − 1)









δ(~k2 − ~p2)

[

(~k1 − ~p1)2
]1− d

2

+
δ(~k1 − ~p1)

[

(~k2 − ~p2)2
]1− d

2

















η rapidity divide, which separates the upper and the lower impact factors

Φ0 Ũα
12 → Φ0 Ũη

12 + 2 ln

(

eη

α

)

KBKΦ0W̃123

Provides a counterterm to the lnα divergence in the virtual double dipole

impact factor:

Φ0 Ũ
α
12 +ΦV 2W̃

α
123 is finite and independent of α
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Various diffractive processes in the shockwave approach
Various type of divergences

Rapidity divergence

UV divergence ~p 2
g → +∞ ΦV 1Φ

∗
0 + Φ0Φ

∗
V 1

Soft divergence pg → 0 ΦV 1Φ
∗
0 + Φ0Φ

∗
V 1,ΦR1Φ

∗
R1

Collinear divergence pg ∝ pq or pq̄ ΦR1Φ
∗
R1

Soft and collinear divergence pg =
p+g

p+q
pq or

p+g

p+q̄
pq̄, p

+
g → 0 ΦR1Φ

∗
R1
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Various diffractive processes in the shockwave approach
UV divergence

Dressing of the external lines

Some null diagrams just contribute to turning UV divergences into IR
divergences

Φ = 0 ∝
(

1

2ǫIR
− 1

2ǫUV

)
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Various diffractive processes in the shockwave approach
Various type of divergences

Rapidity divergence

UV divergence

Soft divergence pg → 0 ΦV 1Φ
∗
0 + Φ0Φ

∗
V 1,ΦR1Φ

∗
R1

Collinear divergence pg ∝ pq or pq̄ ΦR1Φ
∗
R1

Soft and collinear divergence pg =
p+g

p+q
pq or

p+g

p+q̄
pq̄, p

+
g → 0 ΦR1Φ

∗
R1

At this stage, the treatment of collinear and soft and collinear divergence are
process dependent

3 examples

exclusive dijet diffractive production: jet algorithm [R. Boussarie,

A. Grabovsky, L. Szymanowski, S.W., JHEP 11 (2016)]

exclusive meson diffractive production: renormalisation of the meson
distribution amplitude
[R. Boussarie, A. Grabovsky, D. Ivanov, L. Szymanowski, S.W., PRL 119 (2017)]

semi-inclusive dihadron production: renormalisation of the parton
fragmentation functions
[M. Fucilla, A. Grabovsky, D. Ivanov, E. Li, L. Szymanowski, S.W., JHEP 03

(2023)]
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Various diffractive processes in the shockwave approach
Soft and collinear divergence: dijet case

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

Should partons (|p1|, φ1, y1) and (p2|, φ2, y2) combined in a single jet?
|pi| =transverse energy deposit in the calorimeter cell i of parameter
Ω = (yi, φi) in y − φ plane

define transverse energy of the jet: pJ = |p1|+ |p2|
jet axis:

Ωc















yJ =
|p1| y1 + |p2| y2

pJ

φJ =
|p1|φ1 + |p2|φ2

pJ

parton1 (Ω1, |p1|)

parton2 (Ω2, |p2|)

cone axis (Ωc) Ω = (yi, φi) in y − φ plane

If distances |Ωi − Ωc|2 ≡ (yi − yc)2 + (φi − φc)
2 < R2 (i = 1 and i = 2)

=⇒ partons 1 and 2 are in the same cone Ωc

Applying this (in the small R2 limit) cancels our soft and collinear divergence
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Exclusive dijet diffractive production
Various type of divergences: dijet case

Dijet case

Rapidity divergence

UV divergence

Soft divergence pg → 0 ΦV 1Φ
∗
0 + Φ0Φ

∗
V 1,ΦR1Φ

∗
R1

Collinear divergence pg ∝ pq or pq̄ ΦR1Φ
∗
R1

Soft and collinear divergence

The remaining divergences cancel the standard way:
virtual corrections and real corrections cancel each other

This is done after combining:

the (LO + NLO) contribution to qq̄ production

the part of the contribution of the qq̄g production where the gluon is
either soft or collinear to the quark or to the antiquark, so that they both
form a single jet
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Various diffractive processes in the shockwave approach
Collinear factorization: meson case

The impact factor is the convolution of a hard part and the vacuum-to-meson
matrix element of an operator

q
H2 S2

ρ

∫

x

(H2(x))
αβ
ij

〈

ρ
∣

∣

∣
ψ̄α

i (x)ψ
β
j (0)

∣

∣

∣
0
〉

q
H3 S3

ρ

∫

x1,x2

(Hµ
3 (x1,x2))

αβ
ij,c

〈

ρ
∣

∣

∣
ψ̄α

i (x1)A
c
µ(x2)ψ

β
j (0)

∣

∣

∣
0
〉

H and S are connected by:

convolution

summation over spinor and color indices

Once factorization in the t channel is done, now factorize in the s channel with
collinear factorization: expand the impact factor in powers of the hard scale
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Various diffractive processes in the shockwave approach
Collinear factorization: meson case

Collinear factorization at twist 2

Leading twist DA for a longitudinally polarized light vector meson

〈

ρ
∣

∣ψ̄(z)γµψ(0)
∣

∣ 0
〉

→ pµfρ

∫ 1

0

dxeix(p·z)ϕ1(x)

Leading twist DA for a transversely polarized light vector meson

〈

ρ
∣

∣ψ̄(z)σµνψ(0)
∣

∣ 0
〉

→ i(pµενρ − pνεµρ )fT
ρ

∫ 1

0

dxeix(p·z)ϕ⊥(x)

The twist 2 DA for a transverse meson is chiral odd, thus γ∗A→ ρTA starts at twist 3
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Various diffractive processes in the shockwave approach
Collinear factorization: meson case

NLO Deep Virtual Meson Production
with Pomeron (shockwave) exchange

Leading twist for a longitudinally polarized, C− meson:

Make the qq̄ pair collinear to the meson, and convolute with a Distribution
Amplitude (vacuum-to-meson matrix element)

Additional divergence from the colinearity: canceled from the renormalization
of the s-channel operator (ERBL evolution equation for the DA)

Probes gluon GPDs at low x, as well as twist 2 DAs
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Various diffractive processes in the shockwave approach
Collinear factorization: Diffractive di-hadron production

Diffractive di-hadron production at NLO

γ(∗)(pγ) + P (p0)→ h1(ph1) + h2(ph2) +X + P (p′0) (X = X1 +X2)

Rapidity gap between (h1h2X) and P ′(p′0).

General kinematics (t,Q2) and arbitrary photon polarization: process
could be either photo-production or electro-production

h1

h2
γ(∗)

〈 P |

rapidity gap

| P ′ 〉

X1

X2

h1

h2
γ(∗)

〈P |

rapidity gap

| P ′ 〉

X1

X2

Collinear factorization: Hard scale with Λ2
QCD ≪ ~p 2

h1
∼ ~p 2

h2
.

Assume ~p 2 ≫ ~p 2
h1,2

~p = relative transverse momentum of the two hadrons

⇒ Use of single hadron fragmentation functions to describe hadronization
⇒ Proof of cancellation of collinear and soft divergencies
finite term computed analytically

Saturation region : ~p 2
h1
∼ ~p 2

h2
< Q2
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Conclusion

There have been very important progresses in the theoretical description of
gluonic saturation:

Evolution kernels are now known at NLO
Many impact factor are now known at NLO

Description of processes at a complete NLO level remains challenging in
view of the complexity of the obtained analytical results:
no full phenomenological NLO description of any process including
saturation for the moment

Understanding the way of including collinear logarithms effects is an
important problem (to avoid negative cross-sections!)

There is a clear hope that these various results should provide precise
observables to reveal without ambiguity the saturation of gluons in
nucleons and nuclei, and to study the Coor Glass Condensate

Many precision observables could be studied at LHC in UPC and at the
future EIC
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