Warped extra-dimension paradigm: precision EW data & tests at ILC

G. Moreau
Laboratoire de Physique Théorique, Orsay, France

partly from...

C. Bouchart,
G.M. NPB 2008

A. Djouadi, G.M.,
F. Richard NPB 2007
I) Introduction

II) Comparison of EW fits in RS/SM

III) The case of heavy flavors

IV) Testing warped ED models at ILC

V) Conclusion
I) Introduction

Problems/Solutions in the Higgs boson sector

a) Quantum instability of the Higgs mass: \(\delta m_h^2 \propto \Lambda_{NP}^2 \)

\(~\Rightarrow\) Supersymmetry (MSSM): \(\delta m_h^2 \approx \tilde{m}^2 \approx (10^2 \text{ GeV})^2 \) as no quadratic dvg.

\(~\Rightarrow\) Extra Dimensions (ADD,RS): \(\delta m_h^2 \) protected by \(\Lambda_{NP} < M_{\text{grav}} \approx \text{TeV} \)

(Higgsless): models without Higgs boson!

\(~\Rightarrow\) Composite Higgs (MHCM): \(\delta m_h^2 \) protected by \(\Lambda_{NP} = \Lambda_{IR} \approx \text{TeV} \)

[& possibly till \(\Lambda_{NP} \) via a global symmetry]

b) Quantum instability of the Higgs quartic coupling \(\lambda \)

\(~\Rightarrow\) Supersymmetry (MSSM): SUSY \(\Rightarrow \lambda = g^2 \) protects \(\lambda \)

\(~\Rightarrow\) Extra Dimensions (gauge-Higgs unif.): GAUGE SYM. \(\Rightarrow \lambda = g^2 \) protects \(\lambda \)

(Higgsless): no high-energy Higgs potential
c) **EW Symmetry Breaking dynamics**

~> Supersymmetry (mSUGRA): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)

~> Composite Higgs (MHCM): EWSB triggered by negative Higgs mass induced radiatively (via top quark loop)

~> Extra Dimensions (Higgsless): SB by field Boundary Conditions & KK masses for fermions/bosons

So the main approaches towards the Higgs questions are SUSY or ED like

+ renew of interest for ED-type scenarios:

\[
\begin{align*}
\text{EXP.} & - \text{no discovery of superpartners @ LEP II (nor Tevatron Run II)} \\
\text{TH.} & - \text{AdS/CFT correspondence (98’)} \Rightarrow \text{calculability of EW observables (03’)} \\
& \text{in Composite Higgs scenarios (84’)}
\end{align*}
\]
+ other attractive features of the Extra-Dimension scenarios:

- WIMP candidates for the dark matter of universe (UED,RS) stable due to a KK-parity

- Unification of gauge couplings (ADD) at high-energies (RS)

- Fermion mass and flavor models (ADD,RS) in SUSY

- ED = necessary ingredient for high-energy string theories
Bulk gauge bosons/fermions mix with their KK excitations

=> tree-level contributions to EW observables

so the challenges are to...

[1] respect the constraints from EW precision data

=> Bulk custodial symmetry

\[
\begin{align*}
O(4) & \quad SU(2)_L \times SU(2)_R \\
\Downarrow & \quad \cong \quad \Downarrow \\
O(3) & \quad SU(2)_V \times P_{LR}
\end{align*}
\]

=> Brane-localized kinetic terms for fermions/gauge fields

[2] interpret anomalies in the SM fit of EW data (main one: A^b_{FB})

=> Bulk flavor structure
<table>
<thead>
<tr>
<th>5D holographic version</th>
<th>RS with bulk fields</th>
<th>gauge-Higgs unification</th>
<th>Higgsless models</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D dual [in AdS/CFT] interpretation</td>
<td>composite Higgs boson</td>
<td>composite Higgs pseudo-Goldstone boson of a global symmetry (as for little Higgs with T parity)</td>
<td>technicolor models</td>
</tr>
<tr>
<td>EW constraints</td>
<td>S, T within 95% C.L. [S>0 ; T>0 ; U ≈ 0] for M_{KK} \approx 3\text{TeV}, m_h \approx 115-500 \text{ GeV}</td>
<td>S, T within 95% C.L. [S>0 ; T>0, <0 ; U ≈ 0] for M_{KK} \approx 3\text{TeV}, m_h \approx 115-190 \text{ GeV}</td>
<td>S=1.15 (excess by factor 5) ; T ≈ 0 ; U ≈ 0, for M_{KK} \approx 1.2\text{TeV}</td>
</tr>
</tbody>
</table>

(without custodial: e.g. M_{KK} \approx 6.4\text{TeV} , m_h \approx 1\text{TeV})
II) Comparison of EW fits in RS/SM

The RS model with bulk fields:

- RS addresses the gauge hierarchy:
 \[M_{\text{grav}} \approx 1 \text{ TeV} \approx Q_{\text{EW}} \]

- RS generates the mass hierarchies:
 \[m_e \ll m_t \]

Planck–brane TeV–brane
Improved goodness-of-fit

EW observables are expressed in terms of oblique parameters encoding the New Physics...

\[
S_{RS} \simeq 2\pi \left(\frac{2.4v}{M_{KK}} \right)^2 \quad T_{RS} \simeq k^{\frac{2}{3}} R e \frac{\tilde{g}^2 \tilde{M}^2}{k^2} \left(\frac{2.4v}{M_{KK}} \right)^2
\]
Better quality of fit in RS than in SM cause..

1) positive contribution T_{RS} *(custodial symmetry breaking)*

2) SM fit degraded by the $\sin^2 \theta_W$ measurement derived *directly* from A_{FB}^{b}:

\[
\begin{align*}
A_{fb}^{0,l} & = 0.23099 \pm 0.00053 \\
A_{l}(P_{\tau}) & = 0.23159 \pm 0.00041 \\
A_{l}(SLD) & = 0.23098 \pm 0.00026 \\
A_{fb}^{0,b} & = 0.23221 \pm 0.00029 \\
A_{fb}^{0,c} & = 0.23220 \pm 0.00081 \\
Q_{fb}^{had} & = 0.2324 \pm 0.0012 \\
\end{align*}
\]

Average

0.23153 ± 0.00016

\(\chi^2/d.o.f.: 11.8/5\)
RS fit can be better for any $m_h > 115\text{GeV}$ (e.g. $m_h = 190\text{GeV} \Rightarrow h \to Z^0 Z^0$)

For $m_h = 500\text{ GeV}$

\[
\begin{cases}
\text{p-value can be @ 25.3\% in RS if } M_{KK} = 4\text{ TeV} \\
\text{p-value is only @ 2.5 \times 10^{-9} in SM} \\
\text{m}_h\text{ excluded in gauge-Higgs unification & SUSY}
\end{cases}
\]

=> the discovery of a heavy Higgs would constitute a sign for RS

The best-fit m_h value is possibly larger than the LEP2 direct limit of 115GeV

in contrast with the SM where the best-fit m_h is $76^{+24}_{-24} \text{ GeV}$ (getting even smaller by excluding A^b_{FB})
III) The case of heavy flavors

\[A^b_{FB} : \text{a NP effect in the b sector?} \]

\[A^b_{FB}(\text{pole}) = \frac{\int_0^1 \sigma_\theta d\cos\theta - \int_{-1}^0 \sigma_\theta d\cos\theta}{\sigma_0(e^+e^- \rightarrow \gamma/Z \rightarrow b\bar{b})} \]

\[= \frac{3 (Q^{eL}_{Z})^2 - (Q^{eR}_{Z})^2 - (Q^{bL}_{Z})^2 - (Q^{bR}_{Z})^2}{4 (Q^{eL}_{Z})^2 + (Q^{eR}_{Z})^2 (Q^{bL}_{Z})^2 + (Q^{bR}_{Z})^2} \]

\[R_b = \frac{\Gamma(Z \rightarrow b\bar{b})}{\Gamma(Z \rightarrow \text{hadrons})} \]

\[= \frac{(Q^{bL}_{Z})^2 + (Q^{bR}_{Z})^2}{\sum_{q \neq t} [(Q^{qL}_{Z})^2 + (Q^{qR}_{Z})^2]} \]
Interpretation in a generic extra-dimensional model:

\[
\left| \delta Q_Z^f \right| \approx 1\% \quad < \quad \left| \delta Q_Z^{b/L/R} \right| \approx -1.5/30\%
\]

Coupling \(Z_{KK} f \bar{f} \quad < \quad \) Coupling \(Z_{KK} b \bar{b} \)

\[m_{b'}(c_{t_R}) \quad < \quad m_{f'}(c_{light}) \]

\[m_t(c_{t_R}) \quad \uparrow \quad \Rightarrow \quad m_{b'}(c_{t_R}) \quad \downarrow \]

natural conditions within the RS model
Fit of $R_b + 8$ data for $A^b_{FB}(\sqrt{s})$
Global A_{FB}^b fit @ and off the Z pôle:

\[A_{FB}^b(s \sim M_Z^2) \]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>24</td>
</tr>
<tr>
<td>RSa</td>
<td>20</td>
</tr>
<tr>
<td>RSb</td>
<td>14</td>
</tr>
</tbody>
</table>

\(b_R \) under \(SU(2)_L \times SU(2)_R \times U(1)_X \):

\[
\begin{align*}
Q_X &= (B - L)/2 \Rightarrow I_R^3 = -1/2 \quad \text{RSa} \\
Q_X &= -5/6 \Rightarrow I_R^3 = +1/2 \quad \text{RSb}
\end{align*}
\]
IV) Testing warped ED models at ILC

Indirect effects mainly in the heavy quark sector
(b,t couplings to KK bosons up to $\times \sqrt{2\pi kR_c} \approx 8$)

 маш Giga-Z: more data on A^b_{FB} / R_b to confirm or invalidate the anomaly
(and its possible RS interpretation)

Contribution from s-channel exchange of KK Z, KK photon to top pair
production in $RS \rightarrow ILC$ sensitivity on M_{KK} ($\delta \sigma \approx 1\%$, $A^t_{LR} \approx 0.002$):

$\sim 10-20$ TeV ! ...out of LHC reach {little hierarchy}

[De Pree, Sher 06]
\[e^+ e^- \rightarrow \gamma / Z^{(n)}_{KK} \rightarrow t\bar{t} \]

\[M_{KK} = 3 \text{ TeV} \]
Through FCNC...

Tree-level FCNC process $e^+e^- \rightarrow t\bar{c}$ through Z^0-KK's mixing in RS:

$$\sigma_{tc} / \sigma_{\mu\mu} \approx 2 \times 10^{-5} \text{ at } \sqrt{s} \approx 200 \text{ GeV}$$

(+ angular distributions @ ILC can probe the prediction of Right-handed coupling dominance)

[Agashe, Perez, Soni 06]
Higgs compositeness effects / KK gauge boson mixings
⇒ h^0 vertex corrections
⇒ deviations in $\sigma(ff \rightarrow h^0) \times B(h^0 \rightarrow ...)$ [model-independent study]

[Giudice, Grojean, Pomarol, Rattazzi]

⇒ testable at LHC when deviations reach 20-60% ($m_h < 150$ GeV)
testable at ILC already @ the level of a few %

Gravity-induced EWSB scenario in URS:
⇒ corrections testable at ILC in $g_{h^0WW}^{SM}/g_{h^0WW} \approx 0.5 - 0.7$ ($m_h < 1$ TeV)

[Davoudiasl, Lillie, Rizzo 05]

precise m_h reconstruct. @ILC VEV measurement (h^0Z^0 prod.)

λ_h experimental estimation

⇒ to be compared with e.g. VEV_{RS}

Higgs-radion mixing effects ...
Possibly even \textit{direct} effects

\begin{itemize}
\item within composite pseudo-GB Higgs scenarios where $m_{\text{custodians}} \sim 500\text{GeV}$
\item $[\ll M_{\text{KK}} \sim 3\text{TeV}]$ can be compatible with precision EW constraints:
\item [Contino, Da Rold, Pomarol 06]
\item the \textit{single production} of these `custodians' (exotic colored fermions like b', $q_{5/3}$...) becomes accessible by a 1TeV e^+e^- machine..
\item KK Higgs excitation in \textit{URS}:
\item \textit{possible/difficult} in a 1TeV ILC ($\approx 10^{-1}$ reduced $h^{(1)}$-boson couplings)
\item [Davoudiasl, Lillie, Rizzo 05]
\end{itemize}
V) Conclusion

We have shown how, thanks to the custodial symmetry, flavor structure and quark representations, the \textit{RS} model can simultaneously:

- solve the forward-backward \textit{Anomaly} for the bottom
- improve the \textit{quality} of precision EW fits \textit{w.r.t. SM}
- for a best-fit Higgs mass above the \textit{LEP2 limit}.

\textit{There exist various precision tests of warped ED models at ILC, mostly in the third generation quark sector.}
& another model for $m_h = 500$ GeV ...