QUANTUM FIELD THEORY

Tutorials (n'1)

1. Rigid body coordinates.- Let us consider the one-dimensional Lagrangian,

$$L^{\rm 1D} = \frac{1}{2}m\dot{x}^2(t) - V(x) \; .$$

m denotes a point-like system mass, x its coordinate and V a potential energy. We use the notation $\dot{x} = \frac{dx(t)}{dt}$ for the time derivative.

(a) Show that the *Euler-Lagrange* equations for the Lagrangian L^{1D} are nothing else but the second *Newton*'s law.

Applying the course, we have r = 1, q = x so that,

$$\frac{d}{dt} \left(\frac{\partial L^{1\mathrm{D}}(x(t), \dot{x}(t), t)}{\partial \dot{x}(t)} \right) = \frac{\partial L^{1\mathrm{D}}(x(t), \dot{x}(t), t)}{\partial x(t)} ,$$
$$\frac{d}{dt}(m\dot{x}) = m \underbrace{\ddot{x}}_{a(x)} = \underbrace{-V'(x)}_{F_x} .$$

Note that $[\mathcal{A}] = [\int dt L^{1D}] = [E] T = [\hbar]$ (as in QFT).

(b) Calculate the conjugate momentum $p^{1D}(t)$ and then the Hamiltonian H^{1D} for the Lagrangian L^{1D} .

$$p^{1\mathrm{D}}(t) \stackrel{\text{\tiny{$\widehat{=}$}}}{=} \frac{\partial L^{1\mathrm{D}}(x(t), \dot{x}(t), t)}{\partial \dot{x}(t)} = m\dot{x} \,.$$

We recover the canonical momentum.

$$H^{1D} = m\dot{x} \times \dot{x} - \left(\frac{1}{2}m\dot{x}^2 - V(x)\right) = \frac{1}{2}m\dot{x}^2 + V(x) = \frac{(p^{1D})^2}{2m} + V(x) .$$

Let us notice here the generic form (for rigid coordinates as q = x), H = T + V, where T constitutes the kinetic energy and V the potential energy.

(c) Apply the *Hamilton-Jacobi* equations to the Lagrangian L^{1D} .

$$\frac{\partial H}{\partial p^{\rm 1D}} = \dot{x}, \quad \frac{\partial H}{\partial x} = -\dot{p}^{\rm 1D} \quad \Leftrightarrow \quad \frac{p^{\rm 1D}}{m} = \dot{x}, \quad V'(x) = -\dot{p}^{\rm 1D} = -m\ddot{x} \; .$$

- 2. Poisson brackets.- Calculate the following Poisson brackets, where p_s represents generically the conjugate momentum of the variable q_s and H the Hamiltonian. For this purpose, make use of the Hamilton-Jacobi equations.
 - (a) $[q_r, p_s]_P$.
 - (b) $[q_r, H]_P$.
 - (c) $[p_r, H]_P$.

$$(a) \Rightarrow [q_r, p_s]_P = \frac{\partial q_r}{\partial q_w} \frac{\partial p_s}{\partial p_w} - \frac{\partial q_r}{\partial p_u} \frac{\partial p_s}{\partial q_u} = \delta_r^w \delta_s^w = \delta_{rs}$$

$$(b) \Rightarrow [q_r, H]_P = \frac{\partial q_r}{\partial q_s} \frac{\partial H}{\partial p_s} - \frac{\partial q_r}{\partial p_{s'}} \frac{\partial H}{\partial q_{s'}} = \delta_r^s \dot{q}_s = \dot{q}_r$$

$$(c) \Rightarrow [p_r, H]_P = \frac{\partial p_r}{\partial q_s} \frac{\partial H}{\partial p_s} - \frac{\partial p_r}{\partial p_{s'}} \frac{\partial H}{\partial q_{s'}} = -\delta_r^s (-\dot{p}_s) = \dot{p}_r$$

The *Kronecker* symbol product is performed by writing explicitly the sum over w (non-vanishing contribution for w = r = s in this sum) and can also be seen as a matrix product. For instance, one has generally for the two following independent variables, $\frac{\partial p_r}{\partial q_s} = 0$.

3. **Relativistic quantum theory.-** We consider the following Lagrangian density for a spinless complex (scalar) field ϕ ,

$$\mathcal{L}_{\phi} = (\partial_{\mu}\phi)^* \partial^{\mu}\phi - m^2 \phi^* \phi ,$$

where $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ is the 4-vector derivative and m a mass parameter.

- (a) Calculate the conjugate momenta π_{ϕ} and π_{ϕ^*} respectively for the fields ϕ and its complex conjugate ϕ^* .
- (b) Calculate the Hamiltonian density \mathcal{H}_{ϕ} for the associated Lagrangian density \mathcal{L}_{ϕ} .
- 4. Gauge field.- We consider the following Lagrangian density for the real electromagnetic field of the spin-one photon A^{μ} (μ being a *Lorentz* index),

$$\mathcal{L}_{A^{\mu}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - j_{\mu} A^{\mu} ,$$

where $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$ is the field strength and j_{μ} represents a charge distribution.

- (a) Calculate the conjugate momenta $\pi_{A^{\mu}}$ of the fields A^{μ} , with special care for $\pi_{A^{0}}$.
- (b) Calculate the Hamiltonian density $\mathcal{H}_{A^{\mu}}$ for the corresponding Lagrangian density $\mathcal{L}_{A^{\mu}}$.
