PARTICLE PHYSICS

Tutorials (n'3)

- 1. *Møller* scattering.- We consider a QED-like interaction structure for spinless particles S^{-1} (unique species of scalar field ϕ of mass m), charged by one unit: Q = -1, interacting, through the coupling constant g = e, with the vector boson field A^{μ} of the massless spin-one photon: $V \equiv \gamma$.
 - (a) Draw all the possible Feynman diagrams contributing to the scattering reaction,

$$S^{-1}(p_A^{\nu})S^{-1}(p_B^{\nu}) \to S^{-1}(p_C^{\nu})S^{-1}(p_D^{\nu})$$

where the 4-momentum associated to each ingoing/outgoing particle is indicated. Note that if the particle S^{-1} is replaced by an electron e^- (spin 1/2), this reaction becomes the so-called *Møller* scattering. Indicate on each leg the arrow of propagation flux direction.

- (b) Write the main probability amplitude $-i\mathcal{M}_i$ for each of the processes drawn in previous question ¹, and then main probability amplitude $-i\mathcal{M}$ for the global reaction, at leading order in the coupling constant *e*.
- (c) Express the whole amplitude obtained, $-i\mathcal{M}$, only in terms of e and the three *Mandelstam* variables:

$$s = (p_A^{\nu} + p_B^{\nu})(p_{A\nu} + p_{B\nu}) = (p_A^{\nu} + p_B^{\nu})^2,$$

$$t = (p_D^{\nu} - p_B^{\nu})^2,$$

$$u = (p_C^{\nu} - p_B^{\nu})^2.$$

Use the feature that the external particles are on shell as well as the 4-momentum conservation relations.

(d) Calculate now this amplitude $-i\mathcal{M}$ in the center-of-mass frame, where by definition

$$\vec{p}_A + \vec{p}_B = \vec{0} \,,$$

and within the case of relativistic scattered particles ². For this purpose, start by combine and apply all the informations and relevant properties on the four involved 4-momenta. Express $-i\mathcal{M}$ exclusively as a function of e and the θ angle between the direction of the initial particle with momentum p_A and the final p_C -particle beam. Comment physically the resulting formula.

¹The table of *Feynman* rules drawn during the lectures can thus be used here.

²Negligible mass term with respect to the momentum one in the squared energy expression.

- Bhabha scattering.- We consider a QED-like interaction structure for spinless particles S⁻¹ (unique species of scalar field φ of mass m), charged by one unit: Q = −1, interacting, through the coupling constant g = e, with the vector boson field A^μ of the massless spin-one photon: V ≡ γ. The anti-particle is thus noted S⁺¹.
 - (a) Draw all the possible *Feynman* diagrams ³ contributing to the scattering reaction,

 $S^{-1}(p_A^{\nu})S^{+1}(p_B^{\nu}) \to S^{-1}(p_C^{\nu})S^{+1}(p_D^{\nu}),$

where the 4-momentum associated to each ingoing/outgoing particle is indicated. Note that if the particle S^{-1} is replaced by an electron e^- and S^{+1} by the positron e^+ (spins 1/2), this reaction becomes the so-called *Bhabha* scattering. Indicate on each leg the arrow of propagation flux direction.

- (b) Write the main probability amplitude $-i\mathcal{M}_i$ for each of the processes drawn in previous question ⁴, and then main probability amplitude $-i\mathcal{M}$ for the global reaction, at the tree level.
- (c) Express the whole amplitude obtained, $-i\mathcal{M}$, only in terms of e and the three *Mandelstam* variables. Use the feature that the external particles are on shell as well as the 4-momentum conservation relations.
- (d) Calculate now this amplitude $-i\mathcal{M}$ in the center-of-mass frame and within the case of relativistic scattered particles. For this purpose, start by combine and apply all the informations and relevant properties on the four involved 4-momenta. Express $-i\mathcal{M}$ exclusively as a function of e and the θ angle between the direction of the initial particle with momentum p_A and the final p_C -particle beam. Comment physically the resulting formula.
- 3. General kinematics relation.- Demonstrate that the sum of the three *Mandelstam* variables is equal to the sum of the external particle squared masses, namely $s + t + u = 4m^2$, for any $2 \rightarrow 2$ -body reaction of type,

$$S^Q(p_A^{\nu})S^Q(p_B^{\nu}) \to S^Q(p_C^{\nu})S^Q(p_D^{\nu}),$$

where the two ingoing and the two outgoing particles have a common mass m.

³Think of using the *Feynman* anti-particle prescription to recover the known *Feynman* rules.

⁴The table of *Feynman* rules drawn during the lectures can thus be used here.