Particle Physics

```
Tutorials (n'3)
```

1. Møller scattering.- We consider a QED-like interaction structure for spinless particles S^{-1} (unique species of scalar field ϕ of mass m), charged by one unit: $Q=-1$, interacting, through the coupling constant $g=e$, with the vector boson field A^{μ} of the massless spin-one photon: $V \equiv \gamma$.
(a) Draw all the possible Feynman diagrams contributing to the scattering reaction,

$$
S^{-1}\left(p_{A}^{\nu}\right) S^{-1}\left(p_{B}^{\nu}\right) \rightarrow S^{-1}\left(p_{C}^{\nu}\right) S^{-1}\left(p_{D}^{\nu}\right),
$$

where the 4 -momentum associated to each ingoing/outgoing particle is indicated. Note that if the particle S^{-1} is replaced by an electron e^{-}(spin $1 / 2$), this reaction becomes the so-called Møller scattering. Indicate on each leg the arrow of propagation flux direction.
(b) Write the main probability amplitude $-i \mathcal{M}_{i}$ for each of the processes drawn in previous question ${ }^{1}$, and then main probability amplitude $-i \mathcal{M}$ for the global reaction, at leading order in the coupling constant e.
(c) Express the whole amplitude obtained, $-i \mathcal{M}$, only in terms of e and the three Mandelstam variables:

$$
\begin{gathered}
s \hat{=}\left(p_{A}^{\nu}+p_{B}^{\nu}\right)\left(p_{A \nu}+p_{B \nu}\right) \hat{=}\left(p_{A}^{\nu}+p_{B}^{\nu}\right)^{\underline{2}}, \\
t \hat{=}\left(p_{D}^{\nu}-p_{B}^{\nu}\right)^{\underline{2}}, \\
u \hat{=}\left(p_{C}^{\nu}-p_{B}^{\nu}\right)^{\underline{2}} .
\end{gathered}
$$

Use the feature that the external particles are on shell as well as the 4-momentum conservation relations.
(d) Calculate now this amplitude $-i \mathcal{M}$ in the center-of-mass frame, where by definition

$$
\vec{p}_{A}+\vec{p}_{B}=\overrightarrow{0},
$$

and within the case of relativistic scattered particles ${ }^{2}$. For this purpose, start by combine and apply all the informations and relevant properties on the four involved 4-momenta. Express - $i \mathcal{M}$ exclusively as a function of e and the θ angle between the direction of the initial particle with momentum p_{A} and the final p_{C}-particle beam. Comment physically the resulting formula.

[^0]2. Bhabha scattering.- We consider a QED-like interaction structure for spinless particles S^{-1} (unique species of scalar field ϕ of mass m), charged by one unit: $Q=-1$, interacting, through the coupling constant $g=e$, with the vector boson field A^{μ} of the massless spin-one photon: $V \equiv \gamma$. The anti-particle is thus noted S^{+1}.
(a) Draw all the possible Feynman diagrams ${ }^{3}$ contributing to the scattering reaction,
$$
S^{-1}\left(p_{A}^{\nu}\right) S^{+1}\left(p_{B}^{\nu}\right) \rightarrow S^{-1}\left(p_{C}^{\nu}\right) S^{+1}\left(p_{D}^{\nu}\right),
$$
where the 4 -momentum associated to each ingoing/outgoing particle is indicated. Note that if the particle S^{-1} is replaced by an electron e^{-}and S^{+1} by the positron e^{+}(spins $1 / 2$), this reaction becomes the so-called Bhabha scattering. Indicate on each leg the arrow of propagation flux direction.
(b) Write the main probability amplitude $-i \mathcal{M}_{i}$ for each of the processes drawn in previous question 4^{4}, and then main probability amplitude $-i \mathcal{M}$ for the global reaction, at the tree level.
(c) Express the whole amplitude obtained, $-i \mathcal{M}$, only in terms of e and the three Mandelstam variables. Use the feature that the external particles are on shell as well as the 4momentum conservation relations.
(d) Calculate now this amplitude $-i \mathcal{M}$ in the center-of-mass frame and within the case of relativistic scattered particles. For this purpose, start by combine and apply all the informations and relevant properties on the four involved 4 -momenta. Express -iM exclusively as a function of e and the θ angle between the direction of the initial particle with momentum p_{A} and the final p_{C}-particle beam. Comment physically the resulting formula.
3. General kinematics relation.- Demonstrate that the sum of the three Mandelstam variables is equal to the sum of the external particle squared masses, namely $s+t+u=4 m^{2}$, for any $2 \rightarrow 2$-body reaction of type,
$$
S^{Q}\left(p_{A}^{\nu}\right) S^{Q}\left(p_{B}^{\nu}\right) \rightarrow S^{Q}\left(p_{C}^{\nu}\right) S^{Q}\left(p_{D}^{\nu}\right)
$$
where the two ingoing and the two outgoing particles have a common mass m.

[^1]
[^0]: ${ }^{1}$ The table of Feynman rules drawn during the lectures can thus be used here.
 ${ }^{2}$ Negligible mass term with respect to the momentum one in the squared energy expression.

[^1]: ${ }^{3}$ Think of using the Feynman anti-particle prescription to recover the known Feynman rules.
 ${ }^{4}$ The table of Feynman rules drawn during the lectures can thus be used here.

