PARTICLE PHYSICS

Tutorials (n'1)

- 1. Lorentz boost.- We consider the case of a Lorentz boost along the (Ox) axis of the frame \mathcal{F} .
 - (a) Express the 4-coordinates x'^{μ} in a frame \mathcal{F}' in terms of the 4-coordinates x^{μ} in \mathcal{F} [$\mu = 0, 1, 2, 3$ being a *Lorentz* index]. The relative velocity of \mathcal{F}' with respect to \mathcal{F} is noted $\vec{V'}$. Use the expression of the *Lorentz* matrix Λ^{μ}_{ν} .
 - (b) Comment the limiting case $1 \gg |\beta|$ where $\beta = \overline{V}'/c$, c being the speed of light.
- 2. Basic covariant calculations.- We consider the covariant formalism of special relativity¹.
 - (a) Show that $A^{\sigma}B_{\sigma} = A_{\sigma}B^{\sigma}$ where A^{σ} and B^{σ} are 4-vectors.
 - (b) Calculate $g^{\mu\nu}g_{\mu\nu}$ where $g^{\mu\nu}$ is the metric tensor.
- 3. **4-momentum.-** The 4-momentum of an elementary particle can be written as $p^{\mu} = m v^{\mu}$ with the 4-velocity $v^{\mu} = (\gamma_v c, \gamma_v \vec{v}), \vec{v}$ being the velocity of the system (particle), m the particle mass and $\gamma_v = 1/\sqrt{1 \frac{\vec{v}^2}{c^2}}$.
 - (a) Calculate the *Lorentz* product $p^{\mu}p_{\mu}$.
 - (b) Comment about the *Lorentz* invariance of the result.
- 4. Relativistic energy.- We study the non-relativistic limit of the global energy.
 - (a) Based on the energy expression $E = \gamma_v mc^2$, develop the energy at leading order in the expansion parameter $\beta_v^2 = (\vec{v}/c)^2$.
 - (b) Based on the energy expression $E = \sqrt{\vec{p}^2 c^2 + m^2 c^4}$ and momentum expression $\vec{p} = \gamma_v m \vec{v}$, develop the energy at leading order in $\beta_v^2 = (\vec{v}/c)^2$.
 - (c) Compare and comment the two above results.
- 5. Inverse Lorentz transformation.- Show that if one has the Lorentz transformation $A'^{\sigma} = \Lambda^{\sigma}_{,\rho} A^{\rho}$ where A^{σ} is a 4-vector, then one has $A^{\sigma} = (\Lambda^{-1})^{\sigma}_{,\rho} A'^{\rho}$.
- 6. Metric tensor. Show that the metric tensor $g^{\mu\nu}$ is a *Lorentz* invariant rank-two tensor.
- 7. Lorentz matrix determinant.- Based on the previous exercise, show that $det(\Lambda_{.,\rho}^{\sigma}) = \pm 1$.

¹Throughout the tutorials, we use the Minkowski metric tensor $g^{\mu\nu} = diag(+ - -)$.

- 8. Jacobian.- Using the previous exercise and seing the *Lorentz* transformation as a change of variables within an integration process, demonstrate that $d^4x = dx^0 dx^1 dx^2 dx^3$ is a *Lorentz* scalar.
- 9. **4-derivative.-** Demonstrate that $\partial'^{\sigma} = \Lambda^{\sigma}_{,\rho} \partial^{\rho}$ in a *Lorentz* transformation, noting $\partial^{\mu} = \frac{\partial}{\partial x_{\mu}}$. Start form the 4-coordinate transformations and multiply those equalities by a *Lorentz* matrix.
- 10. **Natural unit system.-** Study the electric charge within the natural unit system using the *Coulomb*'s force.
- 11. **Probability current.-** Verify that the current $\vec{j} = -\frac{i\hbar}{2m}(\vec{\nabla}\phi \phi^* \phi \vec{\nabla}\phi^*)$ is well a solution of the continuity equation $\vec{\nabla}.\vec{j} + \frac{\partial|\phi|^2}{\partial t} = 0$ where $\phi(\vec{x},t)$ is the generic wave function. Make use of the *Schrödinger* equation.
- 12. Schrödinger equation solution.- We consider the free Schrödinger equation.
 - (a) Check that $\phi(\vec{x}, t) = N e^{\frac{i}{\hbar}(\vec{p}\cdot\vec{x}-Et)}$ is well solution of the *Schrödinger* equation.
 - (b) Show that $f(\vec{x}) = e^{\frac{i}{\hbar}(\vec{p}.\vec{x})}$ is eigenfunction of the Hamiltonian.
 - (c) Calculate the associated probability density of location $|\phi(\vec{x}, t)|^2$ as well as the probability density flux \vec{j} .
- 13. Interpretations of the Schrödinger equation.- Within the non-relativistic framework of quantum mechanics, we consider the following Lagrangian density, involving the wave function (complex scalar field) $\phi(t, \vec{x})$ for a particle of mass m,

$$\mathcal{L} = \frac{i\hbar}{2} \left(\phi^* \partial_t \phi - \phi \, \partial_t \phi^* \right) - \frac{\hbar^2}{2m} \sum_{k=1}^3 \partial_k \phi \, \partial_k \phi^* - V(t, \vec{r}) \, \phi \, \phi^* \,. \tag{1}$$

 $\partial_t = \partial/\partial t$, $\partial_k = \partial/\partial x_k$ [no covariant formalism] are respectively the time and space partial derivatives, the exponent * stands for the complex conjugate and V is some energy potential.

(a) To find out the equation of motion, apply the Euler-Lagrange equation,

$$\frac{\partial \mathcal{L}}{\partial \phi} = \partial_t \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} + \sum_{j=1}^3 \partial_j \frac{\partial \mathcal{L}}{\partial (\partial_j \phi)}$$
(2)

to the Lagrangian (??). Comment on the obtained equation.

(b) Calculate the following quantity, by using Equation (??),

$$\mathcal{Q} = \phi \frac{\partial \mathcal{L}}{\partial \phi} + \partial_t \phi \frac{\partial \mathcal{L}}{\partial (\partial_t \phi)} + \sum_{k=1}^3 \partial_k \phi \frac{\partial \mathcal{L}}{\partial (\partial_k \phi)}$$
(3)

and compare the resulting Q with the Lagrangian \mathcal{L} itself. Same question for the Quantity (??) with the replacement $\phi \to \phi^*$ [but same \mathcal{L}].

(c) Let us now define the two new objects,

$$R = -\frac{i}{\hbar} \left\{ \phi \frac{\partial \mathcal{L}}{\partial(\partial_t \phi)} - \phi^* \frac{\partial \mathcal{L}}{\partial(\partial_t \phi^*)} \right\}, \ C_j = -\frac{i}{\hbar} \left\{ \phi \frac{\partial \mathcal{L}}{\partial(\partial_j \phi)} - \phi^* \frac{\partial \mathcal{L}}{\partial(\partial_j \phi^*)} \right\}.$$
(4)

Calculate the combination $i\hbar(\partial_t R + \partial_j C_j)$ only by using Equations (??), (??) and the previous question (without calculating explicitly R and C_j through the \mathcal{L} definition)². Interpret physically the result as well as R and C_j .

(d) Calculate both R and C_j by injecting the Lagrangian (??) into Equalities (??). Give C_j as an imaginary part.

²Noticing in Equation (??), that some terms arise by replacing ϕ with ϕ^* , might help to have more compact expressions.