Particle Physics

```
Tutorials (n'1)
```

1. Lorentz boost.- We consider the case of a Lorentz boost along the $(O x)$ axis of the frame \mathcal{F}.
(a) Express the 4 -coordinates $x^{\prime \mu}$ in a frame \mathcal{F}^{\prime} in terms of the 4-coordinates x^{μ} in $\mathcal{F}[\mu=$ $0,1,2,3$ being a Lorentz index]. The relative velocity of \mathcal{F}^{\prime} with respect to \mathcal{F} is noted \vec{V}^{\prime}. Use the expression of the Lorentz matrix $\Lambda_{. \nu}^{\mu}$.
(b) Comment the limiting case $1 \gg|\beta|$ where $\beta=\bar{V}^{\prime} / c, c$ being the speed of light.
2. Basic covariant calculations.- We consider the covariant formalism of special relativity ${ }^{1}$.
(a) Show that $A^{\sigma} B_{\sigma}=A_{\sigma} B^{\sigma}$ where A^{σ} and B^{σ} are 4 -vectors.
(b) Calculate $g^{\mu \nu} g_{\mu \nu}$ where $g^{\mu \nu}$ is the metric tensor.
3. 4-momentum.- The 4 -momentum of an elementary particle can be written as $p^{\mu}=m v^{\mu}$ with the 4 -velocity $v^{\mu}=\left(\gamma_{v} c, \gamma_{v} \vec{v}\right), \vec{v}$ being the velocity of the system (particle), m the particle mass and $\gamma_{v}=1 / \sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}$.
(a) Calculate the Lorentz product $p^{\mu} p_{\mu}$.
(b) Comment about the Lorentz invariance of the result.
4. Relativistic energy.- We study the non-relativistic limit of the global energy.
(a) Based on the energy expression $E=\gamma_{v} m c^{2}$, develop the energy at leading order in the expansion parameter $\beta_{v}^{2}=(\vec{v} / c)^{2}$.
(b) Based on the energy expression $E=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}$ and momentum expression $\vec{p}=$ $\gamma_{v} m \vec{v}$, develop the energy at leading order in $\beta_{v}^{2}=(\vec{v} / c)^{2}$.
(c) Compare and comment the two above results.
5. Inverse Lorentz transformation.- Show that if one has the Lorentz transformation $A^{\sigma}=\Lambda_{. \rho}^{\sigma} A^{\rho}$ where A^{σ} is a 4-vector, then one has $A^{\sigma}=\left(\Lambda^{-1}\right)_{. \rho}^{\sigma} A^{\prime \rho}$.
6. Metric tensor.- Show that the metric tensor $g^{\mu \nu}$ is a Lorentz invariant rank-two tensor.
7. Lorentz matrix determinant.- Based on the previous exercise, show that $\operatorname{det}\left(\Lambda_{\cdot \rho}^{\sigma}\right)= \pm 1$.

[^0]8. Jacobian.- Using the previous exercise and seing the Lorentz transformation as a change of variables within an integration process, demonstrate that $d^{4} x=d x^{0} d x^{1} d x^{2} d x^{3}$ is a Lorentz scalar.
9. 4-derivative.- Demonstrate that $\partial^{\prime \sigma}=\Lambda_{. \rho}^{\sigma} \cdot \partial^{\rho}$ in a Lorentz transformation, noting $\partial^{\mu}=\frac{\partial}{\partial x_{\mu}}$. Start form the 4-coordinate transformations and multiply those equalities by a Lorentz matrix.
10. Natural unit system.- Study the electric charge within the natural unit system using the Coulomb's force.
11. Probability current.- Verify that the current $\vec{j}=-\frac{i \hbar}{2 m}\left(\vec{\nabla} \phi \phi^{\star}-\phi \vec{\nabla} \phi^{\star}\right)$ is well a solution of the continuity equation $\vec{\nabla} \cdot \vec{j}+\frac{\partial|\phi|^{2}}{\partial t}=0$ where $\phi(\vec{x}, t)$ is the generic wave function. Make use of the Schrödinger equation.
12. Schrödinger equation solution.- We consider the free Schrödinger equation.
(a) Check that $\phi(\vec{x}, t)=N e^{\frac{i}{\hbar}(\vec{p} \cdot \vec{x}-E t)}$ is well solution of the Schrödinger equation.
(b) Show that $f(\vec{x})=e^{\frac{i}{\hbar}(\vec{p} \cdot \vec{x})}$ is eigenfunction of the Hamiltonian.
(c) Calculate the associated probability density of location $|\phi(\vec{x}, t)|^{2}$ as well as the probability density flux \vec{j}.
13. Interpretations of the Schrödinger equation.- Within the non-relativistic framework of quantum mechanics, we consider the following Lagrangian density, involving the wave function (complex scalar field) $\phi(t, \vec{x})$ for a particle of mass m,
\[

$$
\begin{equation*}
\mathcal{L}=\frac{i \hbar}{2}\left(\phi^{*} \partial_{t} \phi-\phi \partial_{t} \phi^{*}\right)-\frac{\hbar^{2}}{2 m} \sum_{k=1}^{3} \partial_{k} \phi \partial_{k} \phi^{*}-V(t, \vec{r}) \phi \phi^{*} . \tag{1}
\end{equation*}
$$

\]

$\partial_{t}=\partial / \partial t, \partial_{k}=\partial / \partial x_{k}$ [no covariant formalism] are respectively the time and space partial derivatives, the exponent ${ }^{*}$ stands for the complex conjugate and V is some energy potential.
(a) To find out the equation of motion, apply the Euler-Lagrange equation,

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{t} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}+\sum_{j=1}^{3} \partial_{j} \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi\right)} \tag{2}
\end{equation*}
$$

to the Lagrangian (??). Comment on the obtained equation.
(b) Calculate the following quantity, by using Equation (??),

$$
\begin{equation*}
\mathcal{Q}=\phi \frac{\partial \mathcal{L}}{\partial \phi}+\partial_{t} \phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}+\sum_{k=1}^{3} \partial_{k} \phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{k} \phi\right)} \tag{3}
\end{equation*}
$$

and compare the resulting \mathcal{Q} with the Lagrangian \mathcal{L} itself. Same question for the Quantity (??) with the replacement $\phi \rightarrow \phi^{*}$ [but same $\left.\mathcal{L}\right]$.
(c) Let us now define the two new objects,

$$
\begin{equation*}
R=-\frac{i}{\hbar}\left\{\phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi\right)}-\phi^{*} \frac{\partial \mathcal{L}}{\partial\left(\partial_{t} \phi^{*}\right)}\right\}, C_{j}=-\frac{i}{\hbar}\left\{\phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi\right)}-\phi^{*} \frac{\partial \mathcal{L}}{\partial\left(\partial_{j} \phi^{*}\right)}\right\} . \tag{4}
\end{equation*}
$$

Calculate the combination $i \hbar\left(\partial_{t} R+\partial_{j} C_{j}\right)$ only by using Equations (??), (??) and the previous question (without calculating explicitly R and C_{j} through the \mathcal{L} definition) ${ }^{2}$ Interpret physically the result as well as R and C_{j}.
(d) Calculate both R and C_{j} by injecting the Lagrangian (??) into Equalities (??). Give C_{j} as an imaginary part.

[^1]
[^0]: ${ }^{1}$ Throughout the tutorials, we use the Minkowski metric tensor $g^{\mu \nu}=\operatorname{diag}(+---)$.

[^1]: ${ }^{2}$ Noticing in Equation (??), that some terms arise by replacing ϕ with ϕ^{*}, might help to have more compact expressions.

