Problem of Particle Physics

Dirac matrix representations, quantum velocity and charge conjugation

(the 4 problems can be treated independently)

1. The mean value of the Hamiltonian operator restricted to the Hilbert space of spin states is, $u^{(1) \dagger} \hat{H}_{s} u^{(1)}$, where the normalised Dirac spinor reads as, $u^{(1)}=N_{1}\left(1,0, \frac{p_{3}}{E+m}, \frac{p_{1}+i p_{2}}{E+m}\right)^{t} . m, E$ and \vec{p} are respectively the fermion mass, energy and momentum eigenvalues. The Hamiltonian is given ${ }^{1}$ by, $\hat{H}_{s}=\hat{\vec{\alpha}} \cdot \vec{p}+\hat{\beta} m$, where the $\hat{\alpha}, \hat{\beta}$ matrices are considered within the Dirac-Pauli representation.
(a) Calculate explicitly $u^{(1) \dagger} \hat{H}_{s} u^{(1)}$ and give the result as a function of N_{1}, E, \vec{p}^{2} and m. What is the E eigenvalue sign?
(b) Provide the previous result in a simplified form, involving exclusively N_{1}, E and m, by making use of the relativistic expresion, $E^{2}=\vec{p}^{2}+m^{2}$. Then inject $\left|N_{1}\right|^{2}=E+m$ in the final result.
(c) Was it possible to guess this result directly by recalling that $u^{(1)}$ is an eigenstate of H_{s} and using the $u^{(n)}$ ortho-normalisation condition?
2. We consider generically the possible transformations of Dirac matrix representations.
(a) Verify that the Dirac matrix anti-commutation relation, $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} 1$, is invariant under the change of basis defined through the U matrix as $\gamma^{\mu \prime}=U \gamma^{\mu} U^{-1}$.
(b) Which property must fulfill U so that the transformed matrix $\gamma^{0 \prime}$ satisfies the relation $\gamma^{0 / \dagger}=\gamma^{0 \prime}$ (as γ^{0} does)?
(c) Check that the spin observable ${ }^{2}$ commutation relation

$$
\left[\hat{S}_{i}, \hat{S}_{j}\right]=i \sum_{k=1}^{3} \epsilon_{i j k} \hat{S}_{k}
$$

is invariant under the same change of basis: $\hat{S}_{i}^{\prime}=U \hat{S}_{i} U^{-1}$.
(d) Show that the spin eigenvalues are unchanged after the change of basis which acts on the spin eigenstates as $U|\eta\rangle=\left|\eta^{\prime}\right\rangle$. (for this purpose, consider general \hat{S}_{i}^{\prime} eigenvalues)

[^0]3. Let us discuss a quantum velocity defined within the whole Hilbert space $\mathcal{H}=\mathcal{H}_{x} \otimes \mathcal{H}_{s}$ of momentum and spin states.
(a) Using the Ehrenfest theorem, demonstrate the time derivative expression
$$
\frac{d}{d t}\langle\psi| \hat{X}|\psi\rangle=-i\langle\psi|[\hat{X}, \hat{H}]|\psi\rangle
$$
where $|\psi\rangle=|\psi(t)\rangle \in \mathcal{H}, \hat{X}$ is the position observable along the first physical axis and \hat{H} the Hamiltonian (both defined in \mathcal{H}).
(b) Express the commutator $[\hat{X}, \hat{H}]$ in terms of $\hat{\vec{\alpha}}$ components only, thanks to the expression, $\hat{H}=\hat{\vec{\alpha}} \cdot \hat{\vec{P}}+\hat{\beta} m$, where now ${ }^{3} \hat{\vec{P}}$ is the momentum operator of \mathcal{H}_{x}. Make use of the position and momentum commutator.
(c) Deduce $\frac{d}{d t}\langle\psi| \hat{X}|\psi\rangle$ from the two previous questions.
(d) Then what does become $\frac{d}{d t}\langle\psi| \hat{X}|\psi\rangle$ for a state $|\psi\rangle=|p\rangle \otimes|\alpha\rangle$ (with $|p\rangle$ a normalised momentum eigenstate and $|\alpha\rangle$ a normalised $\hat{\alpha}_{1}$ eigenstate in \mathcal{H}_{s})? What are the $\hat{\alpha}_{1}$ eigenvalues? Deduce a physical interpretation of the result.
4. We consider the charge conjugate operator C.
(a) Show from the fundamental C property that $\gamma^{0} C \gamma^{0}=-C$.
(b) Express $\left(\bar{\psi} C \gamma^{\mu} \psi\right)^{\dagger}, \psi$ being the full Dirac spinor, exclusively in terms of $\psi, \bar{\psi}, C$ and γ^{μ}.

[^1]
[^0]: ${ }^{1}$ Throughout this examination we use the natural unit system where $\hbar=c=1$.
 ${ }^{2}$ Defined within the 4-dimensional Hilbert space including the anti-particle state.

[^1]: ${ }^{3}$ In contrast with the first exercise.

