PROBLEM OF PARTICLE PHYSICS

Dirac matrix representations, quantum velocity and charge conjugation

(the 4 problems can be treated independently)

- 1. The mean value of the Hamiltonian operator restricted to the Hilbert space of spin states is, $u^{(1)\dagger}\hat{H}_s u^{(1)}$, where the normalised Dirac spinor reads as, $u^{(1)} = N_1(1, 0, \frac{p_3}{E+m}, \frac{p_1+ip_2}{E+m})^t$. m, E and \vec{p} are respectively the fermion mass, energy and momentum eigenvalues. The Hamiltonian is given ¹ by, $\hat{H}_s = \hat{\vec{\alpha}}.\vec{p} + \hat{\beta}m$, where the $\hat{\alpha}, \hat{\beta}$ matrices are considered within the Dirac-Pauli representation.
 - (a) Calculate explicitly $u^{(1)\dagger}\hat{H}_s u^{(1)}$ and give the result as a function of N_1 , E, \vec{p}^2 and m. What is the E eigenvalue sign?
 - (b) Provide the previous result in a simplified form, involving exclusively N_1 , E and m, by making use of the relativistic expression, $E^2 = \vec{p}^2 + m^2$. Then inject $|N_1|^2 = E + m$ in the final result.
 - (c) Was it possible to guess this result directly by recalling that $u^{(1)}$ is an eigenstate of H_s and using the $u^{(n)}$ ortho-normalisation condition?
- 2. We consider generically the possible transformations of Dirac matrix representations.
 - (a) Verify that the Dirac matrix anti-commutation relation, $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu} \mathbb{1}$, is invariant under the change of basis defined through the U matrix as $\gamma^{\mu'} = U\gamma^{\mu}U^{-1}$.
 - (b) Which property must fulfill U so that the transformed matrix $\gamma^{0'}$ satisfies the relation $\gamma^{0'\dagger} = \gamma^{0'}$ (as γ^0 does)?
 - (c) Check that the spin observable ² commutation relation

$$[\hat{S}_i, \hat{S}_j] = i \sum_{k=1}^3 \epsilon_{ijk} \, \hat{S}_k$$

is invariant under the same change of basis: $\hat{S}'_i = U\hat{S}_i U^{-1}$.

(d) Show that the spin eigenvalues are unchanged after the change of basis which acts on the spin eigenstates as $U|\eta\rangle = |\eta'\rangle$. (for this purpose, consider general \hat{S}'_i eigenvalues)

¹Throughout this examination we use the natural unit system where $\hbar = c = 1$.

²Defined within the 4-dimensional Hilbert space including the anti-particle state.

- 3. Let us discuss a quantum velocity defined within the whole Hilbert space $\mathcal{H} = \mathcal{H}_x \otimes \mathcal{H}_s$ of momentum and spin states.
 - (a) Using the Ehrenfest theorem, demonstrate the time derivative expression

$$\frac{d}{dt} \langle \psi | \hat{X} | \psi \rangle = -i \langle \psi | [\hat{X}, \hat{H}] | \psi \rangle$$

where $|\psi\rangle = |\psi(t)\rangle \in \mathcal{H}$, \hat{X} is the position observable along the first physical axis and \hat{H} the Hamiltonian (both defined in \mathcal{H}).

- (b) Express the commutator $[\hat{X}, \hat{H}]$ in terms of $\hat{\vec{\alpha}}$ components only, thanks to the expression, $\hat{H} = \hat{\vec{\alpha}}.\hat{\vec{P}} + \hat{\beta}m$, where now ³ $\hat{\vec{P}}$ is the momentum operator of \mathcal{H}_x . Make use of the position and momentum commutator.
- (c) Deduce $\frac{d}{dt}\langle \psi | \hat{X} | \psi \rangle$ from the two previous questions.
- (d) Then what does become $\frac{d}{dt}\langle \psi | \hat{X} | \psi \rangle$ for a state $|\psi \rangle = |p \rangle \otimes |\alpha \rangle$ (with $|p \rangle$ a normalised momentum eigenstate and $|\alpha \rangle$ a normalised $\hat{\alpha}_1$ eigenstate in \mathcal{H}_s)? What are the $\hat{\alpha}_1$ eigenvalues? Deduce a physical interpretation of the result.
- 4. We consider the charge conjugate operator C.
 - (a) Show from the fundamental C property that $\gamma^0 C \gamma^0 = -C$.
 - (b) Express $(\bar{\psi}C\gamma^{\mu}\psi)^{\dagger}$, ψ being the full Dirac spinor, exclusively in terms of ψ , $\bar{\psi}$, C and γ^{μ} .

³In contrast with the first exercise.