PROBLEM OF PARTICLE PHYSICS

The CPT theorem

- 1. Charge conjugation.- Let C denote the charge conjugate operator.
 - (a) Show from a known C property that $\gamma^k C = -C(\gamma^k)^t$ with spatial Lorentz indices among k = 1, 2, 3 for the Dirac matrices.
 - (b) Similarly, demonstrate the anti-commutator relation $\{\gamma^0, C\} = 0$.
- 2. **Parity action.-** The space parity changes the sign of each spatial coordinate $x^{1,2,3}$.
 - (a) Give the corresponding Λ^{μ}_{ν} Lorentz matrix.
 - (b) Verify that the parity operator acting on the spinorial Hilbert space, $P = \gamma^0$, satisfies well the covariant relation, $\Lambda^{\mu}_{,\nu} \gamma^{\nu} = P^{-1} \gamma^{\mu} P$, for $\mu = k$ [k = 1, 2 or 3] only.
 - (c) Is this P operator Hermitian? Calculate P^2 and comment physically the result.
- 3. **Time reflection.-** The Lorentz matrix for the reflection on the time coordinate obviously reads as,

$$\tilde{\Lambda}^{\mu}_{\cdot\nu} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & +1 & 0 & 0\\ 0 & 0 & +1 & 0\\ 0 & 0 & 0 & +1 \end{pmatrix} \,.$$

- (a) Express ¹ the time-reflected 4-vector x'^{α} in terms of this $\tilde{\Lambda}^{\mu}_{;\nu}$ matrix and the initial x^{α} . Deduce the new coordinates, t', x', y', z', as functions of the initial ones: t, x, y, z.
- (b) Using the covariant relation, $\tilde{\Lambda}^{\mu}_{\nu\nu}\gamma^{\nu} = T^{-1}\gamma^{\mu}T$, where T is the time reflection operator acting on the spinorial Hilbert space, express the quantities $T^{-1}\gamma^{0}T$ and $T^{-1}\gamma^{k}T$ (k = 1, 2, 3) in terms of Dirac matrices.
- (c) We consider the following operator T,

$$T = \begin{pmatrix} 0 & -i \mathbb{1}_{2 \times 2} \\ i \mathbb{1}_{2 \times 2} & 0 \end{pmatrix} .$$
 (1)

Is this T operator Hermitian? Calculate T^2 and comment physically the result.

(d) Based on Equation (1), calculate ² the anti-commutators $\{T, \beta\}$ and $\{T, \alpha^k\}$ (k = 1, 2, 3) within the Dirac-Pauli representation for the matrices β and α^k .

¹Choosing consistently each Lorentz index.

 $^{{}^{2}\}beta$ and α^{k} are related to the Dirac matrices by $\gamma^{\nu} = (\gamma^{0}, \gamma^{k}) = (\beta, \beta \alpha^{k}).$

- (e) Same question but now within the so-called Weyl representation.
- (f) Deduce from previous question the anti-commutator $\{T, \gamma^0\}$ and commutator $[T, \gamma^k]$.
- (g) Given the results of Question 3f, does the T operator suggested in Equation (1) respect the two conditions obtained in Question 3b? Conclude.
- 4. **CPT transformation.-** The spinor ψ represents a solution of the Dirac equation, with $\bar{\psi} = \psi^{\dagger} \gamma^{0}$.
 - (a) $\overline{(TP\psi_c)}(TP\psi_c)$ represents the term $\overline{\psi}\psi$ transformed under charge conjugation, parity action and time reflection (CPT) ³. Give $\overline{(TP\psi_c)}(TP\psi_c)$ as a function exclusively of $C^{(\dagger)}$, γ^0 , ψ^t and ψ^* . Use the definition $\psi_c = C\gamma^0\psi^*$ and preliminary results (from Questions 2 and 3).
 - (b) Use the previous question, Question 1 and a C^{\dagger} property in order to express $\overline{(TP\psi_c)}(TP\psi_c)$ in terms of $\overline{\psi}$ and ψ only. For this purpose, calculate first $\overline{\psi}^t$.
 - (c) Similarly, express $\overline{(TP\psi_c)}\gamma^0(TP\psi_c)$ as a function exclusively of γ^0 , $\overline{\psi}$ and ψ . Provide only the final result and the changes with respect to the calculation of Questions 4a-4b.
 - (d) Same question for $\overline{(TP\psi_c)}\gamma^k(TP\psi_c)$ (k = 1, 2, 3) as a function exclusively of $\gamma^k, \bar{\psi}, \psi$.
 - (e) In the same way ⁴, express $\overline{(TP\psi_c)}(-\partial_{\mu})(TP\psi_c)$ in terms of $\overline{\psi}\partial_{\mu}\psi$. Once more, give only the result and the differences with respect to the calculation in 4a and 4b.
 - (f) Deduce directly $\overline{(TP\psi_c)}\gamma^{\mu}(-\partial_{\mu})(TP\psi_c)$ from the 3 previous questions.
 - (g) Conclude about the CPT transformation effect on the considered Lorentz invariant terms of a possible Lagrangian density.

³The wave function part $\langle x_{\mu} | p^{\mu} \rangle$ of the spinor ψ is invariant under both the parity action and time reflection. ⁴Noting the 4-vector derivative $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$.