Problem of Particle Physics

The CPT theorem

1. Charge conjugation.- Let C denote the charge conjugate operator.
(a) Show from a known C property that $\gamma^{k} C=-C\left(\gamma^{k}\right)^{t}$ with spatial Lorentz indices among $k=1,2,3$ for the Dirac matrices.
(b) Similarly, demonstrate the anti-commutator relation $\left\{\gamma^{0}, C\right\}=0$.
2. Parity action.- The space parity changes the sign of each spatial coordinate $x^{1,2,3}$.
(a) Give the corresponding $\Lambda_{\cdot, ~}^{\mu}$ Lorentz matrix.
(b) Verify that the parity operator acting on the spinorial Hilbert space, $P=\gamma^{0}$, satisfies well the covariant relation, $\Lambda_{\cdot}^{\mu}{ }_{\nu} \gamma^{\nu}=P^{-1} \gamma^{\mu} P$, for $\mu=k[k=1,2$ or 3$]$ only.
(c) Is this P operator Hermitian? Calculate P^{2} and comment physically the result.
3. Time reflection.- The Lorentz matrix for the reflection on the time coordinate obviously reads as,

$$
\tilde{\Lambda}_{\cdot \nu}^{\mu}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 \\
0 & 0 & +1 & 0 \\
0 & 0 & 0 & +1
\end{array}\right) .
$$

(a) Express ${ }^{1}$ the time-reflected 4 -vector $x^{\prime \alpha}$ in terms of this $\tilde{\Lambda}_{\cdot}^{\mu}{ }_{\nu}$ matrix and the initial x^{α}. Deduce the new coordinates, $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$, as functions of the initial ones: t, x, y, z.
(b) Using the covariant relation, $\tilde{\Lambda}_{\cdot \nu}^{\mu} \gamma^{\nu}=T^{-1} \gamma^{\mu} T$, where T is the time reflection operator acting on the spinorial Hilbert space, express the quantities $T^{-1} \gamma^{0} T$ and $T^{-1} \gamma^{k} T$ ($k=$ $1,2,3$) in terms of Dirac matrices.
(c) We consider the following operator T,

$$
T=\left(\begin{array}{cc}
0 & -i \mathbb{1}_{2 \times 2} \tag{1}\\
i \mathbb{1}_{2 \times 2} & 0
\end{array}\right) .
$$

Is this T operator Hermitian? Calculate T^{2} and comment physically the result.
(d) Based on Equation (1), calculate ${ }^{2}$ the anti-commutators $\{T, \beta\}$ and $\left\{T, \alpha^{k}\right\}(k=1,2,3)$ within the Dirac-Pauli representation for the matrices β and α^{k}.

[^0](e) Same question but now within the so-called Weyl representation.
(f) Deduce from previous question the anti-commutator $\left\{T, \gamma^{0}\right\}$ and commutator $\left[T, \gamma^{k}\right]$.
(g) Given the results of Question 3f, does the T operator suggested in Equation (1) respect the two conditions obtained in Question 3b? Conclude.
4. CPT transformation.- The spinor ψ represents a solution of the Dirac equation, with $\bar{\psi} \hat{=} \psi^{\dagger} \gamma^{0}$.
(a) $\overline{\left(T P \psi_{c}\right)}\left(T P \psi_{c}\right)$ represents the term $\bar{\psi} \psi$ transformed under charge conjugation, parity action and time reflection (CPT) ${ }^{3}$. Give $\overline{\left(T P \psi_{c}\right)}\left(T P \psi_{c}\right)$ as a function exclusively of $C^{(\dagger)}$, γ^{0}, ψ^{t} and ψ^{\star}. Use the definition $\psi_{c}=C \gamma^{0} \psi^{\star}$ and preliminary results (from Questions 2 and 3).
(b) Use the previous question, Question 1 and a C^{\dagger} property in order to express $\overline{\left(T P \psi_{c}\right)}\left(T P \psi_{c}\right)$ in terms of $\bar{\psi}$ and ψ only. For this purpose, calculate first $\bar{\psi}^{t}$.
(c) Similarly, express $\overline{\left(T P \psi_{c}\right)} \gamma^{0}\left(T P \psi_{c}\right)$ as a function exclusively of $\gamma^{0}, \bar{\psi}$ and ψ. Provide only the final result and the changes with respect to the calculation of Questions $4 \mathrm{a}-4 \mathrm{~b}$.
(d) Same question for $\overline{\left(T P \psi_{c}\right)} \gamma^{k}\left(T P \psi_{c}\right)(k=1,2,3)$ as a function exclusively of $\gamma^{k}, \bar{\psi}, \psi$.
(e) In the same way ${ }^{4}$, express $\overline{\left(T P \psi_{c}\right)}\left(-\partial_{\mu}\right)\left(T P \psi_{c}\right)$ in terms of $\bar{\psi} \partial_{\mu} \psi$. Once more, give only the result and the differences with respect to the calculation in 4 a and 4 b .
(f) Deduce directly $\overline{\left(T P \psi_{c}\right)} \gamma^{\mu}\left(-\partial_{\mu}\right)\left(T P \psi_{c}\right)$ from the 3 previous questions.
(g) Conclude about the CPT transformation effect on the considered Lorentz invariant terms of a possible Lagrangian density.

[^1]
[^0]: ${ }^{1}$ Choosing consistently each Lorentz index.
 ${ }^{2} \beta$ and α^{k} are related to the Dirac matrices by $\gamma^{\nu}=\left(\gamma^{0}, \gamma^{k}\right)=\left(\beta, \beta \alpha^{k}\right)$.

[^1]: ${ }^{3}$ The wave function part $\left\langle x_{\mu} \mid p^{\mu}\right\rangle$ of the spinor ψ is invariant under both the parity action and time reflection.
 ${ }^{4}$ Noting the 4 -vector derivative $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$.

