

(lecture notes not allowed; write on a separate sheet; show the number of the treated question; distinguish clearly the demonstration and the result; justify your answers)

1. The theoretical framework in this part is quantum mechanics. Let us consider the Lagrangian density ¹,

$$\mathcal{L} = -\frac{1}{2m} \vec{\nabla} \phi^* \cdot \vec{\nabla} \phi - \frac{1}{2i} \left(\phi^* \frac{\partial \phi}{\partial t} - \frac{\partial \phi^*}{\partial t} \phi \right) - \phi^* V(\vec{r}, t) \phi ,$$

for a spinless particle of mass m described by a wave function $\phi(\vec{r}, t)$. The exponent * stands for the complex conjugation, $\vec{\nabla}$ for the gradient vector and V is an energy potential.

- (a) Find the dimension of the ϕ field entering this Lagrangian density within the natural unit system. Is the result consistent with the standard wave function definition?
- (b) In analytical mechanics, with $\phi, \dot{\phi} = \frac{\partial \phi}{\partial t}, \frac{\partial \phi}{\partial r_i}$ [i = 1, 2, 3] as the fundamental variables, the Hamiltonian density is defined as a component of **the stress tensor**: $\mathcal{H} = \dot{\phi}^* \frac{\partial \mathcal{L}}{\partial \dot{\phi}^*} + \dot{\phi} \frac{\partial \mathcal{L}}{\partial \dot{\phi}} \mathcal{L}$. Calculate this \mathcal{H} .
- (c) Compute the Hamiltonian by integrating \mathcal{H} over the whole physical space. Apply an integration by part for one of the two terms. Comment on the obtained result (field value at infinity and Hamiltonian operator).
- 2. The framework of this part ² is the relativistic quantum mechanics. We consider the covariant Lagrangian density (natural unit system),

$$\mathcal{L}_c = rac{1}{2} \, \partial_\mu \phi^* \, \partial^\mu \phi - rac{m^2}{2} \, \phi^* \phi \; ,$$

of a free spinless particle with mass m. $\phi(\vec{r}, t)$ is the *Klein-Gordon* equation solution, the exponent * stands for the complex conjugation, μ is a *Lorentz* index running from 0 (time component) to 3 and $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ is the 4-vector derivation, x^{μ} being the 4-coordinates.

- (a) By using the *Lorentz* matrix $\Lambda^{\mu}_{,\nu}$ (and its inverse), show in details that \mathcal{L}_c is a *Lorentz* invariant. Give the physical interpretation of this invariance. Is the corresponding action invariant as well?
- (b) Demonstrate that $\partial_{\mu}\phi^*\partial^{\mu}\phi = \partial^{\mu}\phi^*\partial_{\mu}\phi$ using the *Minkowski* metric $g^{\mu\nu}$.

¹ Using the natural unit system where $\hbar = c = 1$.

²Independent from part 1.

(c) The *Lorentz* invariance leads ³ to the local conservation relation $\partial_{\mu}T^{\mu\nu} = 0$ where

$$T^{\mu\nu} = \partial^{\mu}\phi^* \frac{\partial \mathcal{L}_c}{\partial [\partial_{\nu}\phi^*]} + \partial^{\mu}\phi \frac{\partial \mathcal{L}_c}{\partial [\partial_{\nu}\phi]} - \mathcal{L}_c g^{\mu\nu}$$

is **the stress tensor**. Calculate $T^{\mu\nu}$ (let the third term as it is). What is its rank?

- (d) Calculate ⁴ the Hamiltonian density $\mathcal{H} = T^{00} = \partial^0 \phi^* \partial^0 \phi \mathcal{L}_c g^{00}$, defined in analytical mechanics with $\phi, \partial^{\mu} \phi$ as the fundamental variables. Express \mathcal{H} in terms of $\phi^{(*)}, \vec{\nabla} \phi^{(*)}$ and $\frac{\partial \phi^{(*)}}{\partial t}$.
- (e) Assuming that $\phi(\vec{r},t) = \sqrt{\frac{1}{E_n L^3}} e^{i(\vec{p}_n.\vec{r}\pm E_n t)}$ within a volume L^3 , calculate $\phi^*\phi$ and $\frac{\partial \phi^*}{\partial t} \frac{\partial \phi}{\partial t}$. \vec{p}_n and E_n represent respectively the momentum and energy eigenvalues for the quantum state level n.
- (f) For the $\phi(\vec{r}, t)$ solution form of previous question, calculate \mathcal{H} as a function of E_n and L^3 exclusively, by using the classical relativistic energy expression $E_n^2 = \vec{p}_n^2 + m^2$.
- (g) Integrate the Hamiltonian density over the volume L^3 to get the Hamiltonian. What can be concluded?
- (h) In the present analytical mechanics context, $P^{\nu} = \int \int \int_{-\infty}^{+\infty} d^3x T^{0\nu}$ represents the total 4momentum. Indeed, show that P^0 represents the Hamiltonian and demonstrate the global conservation relation $\frac{\partial P^{\nu}}{\partial t} = 0$ (for the latter purpose, integrate the relation $\partial_{\mu}T^{\mu\nu} = 0$ over the whole space and apply the *Gauss* theorem to the part $\sum_{i=1}^{3} \partial_i T^{i\nu}$).
- (i) The stress tensor is also called **the Energy-Momentum tensor**. Express the relation $\partial_{\mu}T^{\mu 0} = 0$ as a continuity equation (knowing that $T^{i0} = T^{0i}$). Interpret physically this equation.
- (j) Comment on the complementary relations $\partial_{\mu}T^{\mu i} = 0$ [i = 1, 2, 3].

³Through the *Noether*'s theorem.

⁴Throughout all the Particle Physics part of the exam, consider the metric convention $g^{\mu\nu} = diagonal(+1, -1, -1, -1)$.