PROBLEM ON PARTICLES & SYMMETRIES

(The treatments of the two parts are independent.)

<u>Part I</u>

1. For a given model, the covariant Lagrangian density contains the following terms ¹ involving the scalar field ϕ_a ,

$$\mathcal{L}_{\phi_a} = \frac{1}{2} \partial_\mu \phi_a \partial^\mu \bar{\phi}_a - \frac{m^2}{2} \phi_a \bar{\phi}_a - g \,\bar{\phi}_b A_\nu \partial^\nu \phi_a - \frac{1}{\Lambda} \phi_a \partial_\nu A^\nu \,\partial^\mu B_\mu \,+ \{\text{C.c.}\} \,,$$

 μ, ν being *Lorentz* indices running from 0 to 3, ∂_{μ} the **4-vector** derivation, ϕ_b another wave function ($\bar{\phi}_b$ its complex conjugate) for a spin-0 particle and A_{μ}, B_{μ} spin-1 fields which behave as **4-vectors** in the covariant formalism. The acronym 'C.c.' means 'Complex conjugate' and concerns each term.

- (a) What is the dimension, and hence the nature, of the parameters m, g and Λ ? Demonstrate the answer.
- (b) Show that \mathcal{L}_{ϕ_a} is a *Lorentz* invariant.
- 2. Interpret diagrammatically each term of \mathcal{L}_{ϕ_a} .
- 3. Apply the following *Euler-Lagrange* equation, $\frac{\partial \mathcal{L}_{\phi_a}}{\partial \phi_a} = \partial_\mu \frac{\partial \mathcal{L}_{\phi_a}}{\partial [\partial_\mu \phi_a]}$. Comment the resulting equation.

<u>Part II</u>

We consider the four-body reaction, $S_a^- S_a^+ \to S_a^- S_a^+ S_b^- S_b^+$, where the initial and final state particles constitute two species [a, b] of massive scalar (spinless) fields with charges ± 1 (clearly indicated as exponents) under a certain gauge U(1) symmetry. Within the relativistic quantum framework, this process is induced by the exchange of two neutral V vector (spin-one) bosons, as depicted in the following *Feynman* diagram.

¹We work within the natural unit system where: $\hbar = c = 1$.

Figure 1: Feynman diagrams for the studied 2 \rightarrow 4-body reaction. The 4-momentum $(k_1^{\mu}, k_2^{\mu}, p_1^{\nu}, p_2^{\nu}, \ell_1^{(\prime)\rho}, \ell_2^{(\prime)\rho}, \ell_2^{(\prime)\rho}, q_1^{\sigma})$ associated to each particle is indicated [the greek indices are *Lorentz* indices such that for instance $\mu = 0, 1, 2, 3$]. The arrows along the legs show the propagation flow directions.

- 1. Make short comments about the charge flows at the interaction vertices and globally for the considered elementary particle reaction.
- Based on the anti-particle prescription, redraw the *Feynman* diagrams of Figure 1, but considering instead only positively charged scalar particles. Indicate the particle names, all scalar particle direction arrows but only the 4-momenta modified with respect to Figure 1 and specify the two axes orienting the plane of your *Feynman* diagram.
- 3. Thanks to the previous question, write ² the probability amplitude, $-i\mathcal{M}$, for the reaction $S_a^- S_a^+ \to S_a^- S_a^+ S_b^- S_b^+$ in terms of the 4-momenta involved in the diagrams of Figure 1, the respective masses $m_{a,b}$ of $S_{a,b}^+$ and the real coupling constant g of the theory. For simplicity we neglect the M_V boson mass terms in the propagators.
- 4. Make a complete comment about the possibility for the scalar propagator denominators, entering $-i\mathcal{M}$, to vanish.
- 5. Using the diagrams, express the 4-momenta $\ell_{1,2,3}^{\mu}$ and $\ell_{1,2,3}^{\prime\mu}$ in terms of $p_{1,2}^{\mu}$, $k_{1,2}^{\mu}$. Express also $k_1^{\mu} + k_2^{\mu}$ as a function of $p_{1,2}^{\mu}$, $q_{1,2}^{\mu}$. ³ What are the physical principles invoked? Compare ℓ_2^{μ} and $\ell_2^{\prime\mu}$. Compare ℓ_3^{μ} and $\ell_3^{\prime\mu}$.

²Apply directly the provided table of *Feynman* rules in the case where the V interaction to $S_i^{\pm} S_j^{\pm}$ does not change the species: i = j. Recall that the scalar propagator is $i/(p^{\mu}p_{\mu} - m^2)$ for a 4-momentum p^{μ} and a mass m, and, that the whole amplitude must be *Lorentz* invariant.

³Please circle (or frame) clearly the results.

- 6. Based on previous question, express the following *Lorentz* products (simplifying the obtained results thanks to the nature of external particles),
 - (a) $(\ell_2^{\nu} k_1^{\nu})(p_{2\nu} p_{1\nu})$ in terms of $p_{1,2}^{\mu}, k_1^{\mu},$
 - (b) $(\ell_2^{\nu} + k_2^{\nu})(q_{2\nu} q_{1\nu})$ in terms of $q_{1,2}^{\mu}, k_2^{\mu}$,
 - (c) $(p_1^{\nu} + k_1^{\nu})(p_{2\nu} + \ell'_{2\nu})$ in terms of $p_{1,2}^{\mu}, k_1^{\mu}$.
- 7. Use the Questions n'5 and 6 to conclude on the equality (or not) between the two terms of $-i\mathcal{M}$. Comment.
- 8. Calculate ⁴ the *Lorentz* product $p_1^{\nu} p_{2\nu}$ between the 4-momenta $p_1^{\nu} = (E_1, \vec{p_1})$ and $p_2^{\nu} = (E_2, \vec{p_2})$. Provide the result in terms of $E_1, \vec{p_1}, E_2, \vec{p_2}$.
- 9. Draw the two other *Feynman* diagrams contributing to the considered reaction but not shown on Figure 1. Indicate the particle names $(S_{a,b}^{\pm}, V)$ and propagation arrows but not the 4-momenta.

⁴With the usual metric $g^{\alpha\beta} = diagonal(+1, -1, -1, -1)$.