PROBLEM ON PARTICLES & SYMMETRIES

A spinless particle coupled to the photon

The framework is the relativistic quantum mechanics.

1. Let us consider the covariant Lagrangian density $\mathcal{L} = \mathcal{L}_F + \mathcal{L}_\phi$ with $\mathcal{L}_F = -\frac{1}{4\mu_0}F_{\mu\nu}F^{\mu\nu}$ and,

$$\mathcal{L}_{\phi} = \frac{1}{2} (\partial_{\mu}\phi + i\frac{q}{\hbar c}A_{\mu}\phi) \left(\partial^{\mu}\bar{\phi} - i\frac{q}{\hbar c}A^{\mu}\bar{\phi}\right) - \frac{m^{2}}{2}\frac{c^{2}}{\hbar^{2}}\bar{\phi}\phi ,$$

 μ, ν being *Lorentz* indices running from 0 to 3, $F^{\mu\nu}$ a **rank-2 tensor** (depending only on A^{μ}), ∂_{μ} the **4-vector** derivation, ϕ the **scalar** wave function ($\bar{\phi}$ the complex conjugate) of a spinless particle [with electric charge q and mass m] and A_{μ} the electromagnetic field (photon) which behaves as a **4-vector** in the covariant formalism ¹.

- (a) By using the *Lorentz* matrix Λ^{μ}_{ν} (and its inverse), show that \mathcal{L}_F is a *Lorentz* invariant.
- (b) Demonstrate that $(\partial_{\mu}\phi)A^{\mu} = (\partial^{\mu}\phi)A_{\mu}$ using the *Minkowski* metric².
- 2. Apply the following *Euler-Lagrange* equation on \mathcal{L} , and, comment about the obtained result.

$$\frac{\partial \mathcal{L}}{\partial \phi} = \partial_{\mu} \frac{\partial \mathcal{L}}{\partial [\partial_{\mu} \phi]}$$

3. Based on previous question, comment about this equation:

$$\left[\bar{D}_{\mu}\bar{D}^{\mu} + \frac{m^2c^2}{\hbar^2} \right] \bar{\phi} = 0, \text{ with, } \bar{D}_{\mu} = \partial_{\mu} - i\frac{q}{\hbar c}A_{\mu}.$$
(1)

- 4. Calculate the linear combination $\phi \times (1) \bar{\phi} \times (\bar{1})$ of Equation (1)³.
 - (a) Express the resulting equation exclusively in terms of quantities of the type $\phi(\partial_{\mu}\partial^{\mu}\phi)$, $2\phi\phi \times (...)$ or $2\phi(\partial_{\mu}\phi) \times (...)$ [possibly with $\bar{\phi}$ instead of some ϕ].
 - (b) Write the obtained equation under the covariant form $\partial_{\mu}j^{\mu} = 0$ (provide explicitly the 4-current j^{μ}). Is j^{μ} a 4-vector?
 - (c) Setting $j^{\mu} = (\rho c, \vec{j})$, express the condition $\partial_{\mu} j^{\mu} = 0$ in terms ⁴ of the j^{μ} components and the gradient vector $\vec{\nabla}$. What does represent physically the obtained equation? Calculate the covariant j_{μ} components.

¹Using standard notations, \hbar denotes the *Planck* constant, *c* the light velocity and μ_0 the vacuum magnetic permeability. ²Throughout all the Particle Physics part of the exam, we consider the convention $g^{\mu\nu} = diagonal(+1, -1, -1, -1)$.

 $^{{}^{3}(\}bar{1})$ denotes the complex conjugate of Equation (1) with A_{μ} taken to be real.

⁴Recall that $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ where the contravariant space-time coordinates read as $x^{\mu} = (ct, x, y, z)$.

5. For an isolated charge q = -e in a central *Coulomb* potential V(r) created by an atomic nucleus containing Z protons ⁵, one has $A^0(r) = ZeV(r)$, $\vec{A} = \vec{0}$ and a stationary solution of Equation (1) has the form [E is the charged particle energy]:

$$\phi(\vec{r},t) = f(\vec{r}) \ e^{-i\frac{Et}{\hbar}}.$$

- (a) For such a solution, calculate the quantity: $Q = q(\phi \partial^0 \bar{\phi} \bar{\phi} \partial^0 \phi 2i \frac{q}{\hbar c} A^0 \phi \bar{\phi}).$
- (b) Make physical remarks about the previous result regarding in particular the obtained sign.

 $^{{}^{5}}V(r) \propto 1/r$ for large r values (where $r^{2} = x^{2} + y^{2} + z^{2}$) with respect to the nuclear radius.