Problem on Particles \& Symmetries

A spinless particle coupled to the photon

The framework is the relativistic quantum mechanics.

1. Let us consider the covariant Lagrangian density $\mathcal{L}=\mathcal{L}_{F}+\mathcal{L}_{\phi}$ with $\mathcal{L}_{F}=-\frac{1}{4 \mu_{0}} F_{\mu \nu} F^{\mu \nu}$ and,

$$
\mathcal{L}_{\phi}=\frac{1}{2}\left(\partial_{\mu} \phi+i \frac{q}{\hbar c} A_{\mu} \phi\right)\left(\partial^{\mu} \bar{\phi}-i \frac{q}{\hbar c} A^{\mu} \bar{\phi}\right)-\frac{m^{2}}{2} \frac{c^{2}}{\hbar^{2}} \bar{\phi} \phi,
$$

μ, ν being Lorentz indices running from 0 to $3, F^{\mu \nu}$ a rank-2 tensor (depending only on A^{μ}), ∂_{μ} the 4 -vector derivation, ϕ the scalar wave function ($\bar{\phi}$ the complex conjugate) of a spinless particle [with electric charge q and mass m] and A_{μ} the electromagnetic field (photon) which behaves as a 4 -vector in the covariant formalism
(a) By using the Lorentz matrix $\Lambda_{. \nu}^{\mu}$ (and its inverse), show that \mathcal{L}_{F} is a Lorentz invariant.
(b) Demonstrate that $\left(\partial_{\mu} \phi\right) A^{\mu}=\left(\partial^{\mu} \phi\right) A_{\mu}$ using the Minkowski metric ${ }^{2}$.
2. Apply the following Euler-Lagrange equation on \mathcal{L}, and, comment about the obtained result.

$$
\frac{\partial \mathcal{L}}{\partial \phi}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left[\partial_{\mu} \phi\right]} .
$$

3. Based on previous question, comment about this equation:

$$
\begin{equation*}
\left[\bar{D}_{\mu} \bar{D}^{\mu}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \bar{\phi}=0, \text { with, } \bar{D}_{\mu} \hat{=} \partial_{\mu}-i \frac{q}{\hbar c} A_{\mu} \tag{1}
\end{equation*}
$$

4. Calculate the linear combination $\phi \times(1)-\bar{\phi} \times(\overline{1})$ of Equation (1) ${ }^{3}$
(a) Express the resulting equation exclusively in terms of quantities of the type $\phi\left(\partial_{\mu} \partial^{\mu} \phi\right)$, $2 \phi \phi \times(\ldots)$ or $2 \phi\left(\partial_{\mu} \phi\right) \times(\ldots)$ [possibly with $\bar{\phi}$ instead of some ϕ].
(b) Write the obtained equation under the covariant form $\partial_{\mu} j^{\mu}=0$ (provide explicitly the 4-current j^{μ}). Is j^{μ} a 4-vector?
(c) Setting $j^{\mu} \hat{=}(\rho c, \vec{j})$, express the condition $\partial_{\mu} j^{\mu}=0$ in terms ${ }^{4}$ of the j^{μ} components and the gradient vector $\vec{\nabla}$. What does represent physically the obtained equation? Calculate the covariant j_{μ} components.

[^0]5. For an isolated charge $q=-e$ in a central Coulomb potential $V(r)$ created by an atomic nucleus containing Z protons ${ }^{5}$, one has $A^{0}(r)=Z e V(r), \vec{A}=\overrightarrow{0}$ and a stationary solution of Equation (1) has the form [E is the charged particle energy]:
$$
\phi(\vec{r}, t)=f(\vec{r}) e^{-i \frac{E t}{\hbar}}
$$
(a) For such a solution, calculate the quantity: $\mathcal{Q}=q\left(\phi \partial^{0} \bar{\phi}-\bar{\phi} \partial^{0} \phi-2 i \frac{q}{\bar{c} c} A^{0} \phi \bar{\phi}\right)$.
(b) Make physical remarks about the previous result regarding in particular the obtained sign.

[^1]
[^0]: ${ }^{1}$ Using standard notations, \hbar denotes the Planck constant, c the light velocity and μ_{0} the vacuum magnetic permeability.
 ${ }^{2}$ Throughout all the Particle Physics part of the exam, we consider the convention $g^{\mu \nu}=\operatorname{diagonal}(+1,-1,-1,-1)$.
 ${ }^{3}(\overline{1})$ denotes the complex conjugate of Equation (1) with A_{μ} taken to be real.
 ${ }^{4}$ Recall that $\partial_{\mu} \hat{=} \frac{\partial}{\partial x^{\mu}}$ where the contravariant space-time coordinates read as $x^{\mu}=(c t, x, y, z)$.

[^1]: ${ }^{5} V(r) \propto 1 / r$ for large r values (where $r^{2}=x^{2}+y^{2}+z^{2}$) with respect to the nuclear radius.

