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Introduction: the CC and QFT

The Cosmological Constant (CC) problem arises as a clash between

classical GR and QFT (in the modern effective FT sense).

In classical GR:

Gµν = Λ0 gµν + 8πGN Tµν
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Introduction: the CC and QFT

The Cosmological Constant (CC) problem arises as a clash between

classical GR and QFT (in the modern effective FT sense).

In classical GR:

Gµν = Λ0 gµν + 8πGN Tµν

QFT: the source of semiclassical gravity becomes ⟨Tµν⟩.
In flat space QFT with unbroken Lorentz symmetry:

⟨Tµν⟩ = Evac ηµν , Evac ≈ M4

For curvatures R ≪ M the flat result gets small corrections:

⟨Tµν⟩ = Evac gµν+O
(

(R/M)2
)

⇒ Λeff = Λ0+8πGNEvac

⇒ Solution to Einstein eq. has curvature of order Λeff
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The problem

In the SM there are many mass scales, and cosmo-

logical observations probe the largest distances, so

all these massive modes are integrated out:

Evac = c1M
4
1 + c2M

4
2 + . . .+ cnM

4
n

Moreover, any first order phase transition with la-

tent heat Λh contributes generically Λ4
h.

All these unrelated terms, plus the bare Λ0 must sum up in such

a way that the observed G−1
N Λeff ∼ (10−3 eV )4 ≪ any of the

scales Mi.
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Possible way out

Modify gravity to disconnect vacuum energy from curvature: allow

large Evac but make it so it does not gravitate.
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Possible way out

Modify gravity to disconnect vacuum energy from curvature: allow

large Evac but make it so it does not gravitate.

• Self-tuning: any mechanism which allows flat spcacetime

solutions for generic values of Evac.
• Braneworld in extra dimension: Evac curves the bulk, but not

the brane.

Previous attempts: Arkani-Hamed et al. ’00; Kachru,Schulz,Silverstein ’00. They all

either lead to bad singularities, or failure to reproduce 4d gravity, or need for

fine-tuning. See also Charmousis, Gregory, Padilla ’07
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Content of this talk

• Self-tuning possible in the a general framework of a dilatonic,

asymmetric braneworld with general 2-derivative induced

terms.

Previously explored around 2000: Arkani-Hamed et al. ’00; Kachru,Schulz,Silverstein

’00; Csaki et al, ’00. See also Charmousis, Gregory, Padilla ’07
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Content of this talk

• Self-tuning possible in the a general framework of a dilatonic,

asymmetric braneworld with general 2-derivative induced

terms.

• Model based on holographic model building: dual of

4-dimensional, strongly coupled, non-gravitational fundamental

theory.

Holography gives a guideline for consistency and a way out of

problems of earlier models.
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Content of this talk

• Self-tuning possible in the a general framework of a dilatonic,

asymmetric braneworld with general 2-derivative induced

terms.

• Model based on holographic model building: dual of

4-dimensional, strongly coupled, non-gravitational fundamental

theory.

Holography gives a guideline for consistency and a way out of

problems of earlier models.

• Outline

• AdS/CFT micro-review

• Setup

• Flat vacua: self-tuning

• Tensor perturbations: emergent braneworld gravity

• Scalar perturbations: stability

• Perspectives
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AdS/CFT detour

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions Maldacena ’98.
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AdS/CFT detour

• Conformal field theory in d dimension ⇔
Anti de Sitter spacetime AdSd+1

ds2 = du2 + e−2u/ℓηµνdx
µdxν

• xµ: QFT coordinates; u dual to energy scale E ∝ e−u/ℓ.
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AdS/CFT detour

• Conformal field theory in d dimension ⇔
Anti de Sitter spacetime AdSd+1

ds2 = du2 + e−2u/ℓηµνdx
µdxν

• xµ: QFT coordinates; u dual to energy scale E ∝ e−u/ℓ.

• bulk scalar field ϕ(u) ⇔ running coupling g(E). The

corresponding holographic RG-flow geometry breaks

conformal invariance (except at fixed points where ϕ̇ = 0).

ds2 = du2 + eA(u)ηµνdx
µdxν , ϕ = ϕ(u).

E ∝ eA(u)
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Setup

Consider a 4d QFT with a UV conformal fixed point, made out of:

1. A strongly coupled large-N CFT, deformed by a relevant

operator;

2. The weakly coupled Standard Model fields;

3. Some heavy messangers with mass scale Λ, coupling the first

two.

Holographic self-tuning of the cosmological constant – p.5



Setup

Consider a 4d QFT with a UV conformal fixed point, made out of:

1. A strongly coupled large-N CFT, deformed by a relevant

operator;

2. The weakly coupled Standard Model fields;

3. Some heavy messangers with mass scale Λ, coupling the first

two.

Integrating out the messangers leaves as an EFT the (broken) CFT,

coupled to the SM, with some effective couplings set by Λ.

Holographic self-tuning of the cosmological constant – p.5



Setup

Consider a 4d QFT with a UV conformal fixed point, made out of:

1. A strongly coupled large-N CFT, deformed by a relevant

operator;

2. The weakly coupled Standard Model fields;

3. Some heavy messangers with mass scale Λ, coupling the first

two.

Integrating out the messangers leaves as an EFT the (broken) CFT,

coupled to the SM, with some effective couplings set by Λ.

semi-holographic description:

• Describe the strongly coupled large-N theory by a 5d gravity

dual with the metric gab and some bulk scalar fields ϕi, dual to

the operators that drive the CFT to the IR.

• The weakly coupled SM fields have a standard field-theoretical

description, and they sit on a 4d defect in th 5d dual geometry.
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Semi-holographic setup

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν).

Σ0

Holographic tuning of the cosmological constant – p.7
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν)

Holographic tuning of the cosmological constant – p.10



Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+

∫

Σ0

d4σ
√
−γL(ψi, H,W a, . . . ,ϕ , γµν)

• Quantum effects from the localized fields generically induce

localized effective potentials for ϕ and γµν on the brane
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ) + . . .

]
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localized effective potentials for ϕ and γµν on the brane.
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Effective brane-world action

S = M3
∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ) + . . .

]

• Quantum effects from the localized fields generically induce

localized effective potentials for ϕ and γµν on the brane.

• Generically expect:

WB ∼ Λ4 U ∼ Z ∼ Λ2

WB(ϕ) includes the brane fields vacuum energy

• Action is the most general up to two derivates preserving 4d

diffeos.
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Effective brane-world action

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]
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Field equations and matching conditions

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Einstein equations + Israel junction conditions ([ ] ≡ jump across Σ0):

Gab =
1

2
∂aϕ∂bϕ− 1

2
gab

(

1

2
gcd∂cϕ∂dϕ+ V (ϕ)

)

,

[

γµν
]

=
[

ϕ
]

= 0;
[

Kµν−γµνK
]

=
1√
−γ

δSΣ0

δγµν
;
[

na∂aϕ
]

= − 1√
−γ

δSΣ0

δϕ
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Field equations and matching conditions

S = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ
[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Einstein equations + Israel junction conditions ([ ] ≡ jump across Σ0):

Gab =
1

2
∂aϕ∂bϕ− 1

2
gab

(

1

2
gcd∂cϕ∂dϕ+ V (ϕ)

)

,

[

γµν
]

=
[

ϕ
]

= 0;
[

Kµν−γµνK
]

=
1√
−γ

δSΣ0

δγµν
;
[

na∂aϕ
]

= − 1√
−γ

δSΣ0

δϕ

Self tuning if ∃ solutions with flat defect for generic WB ∼ Λ4.
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Bulk equations

S5 = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

Vacuum (Poincaré invariant) solutions:

ds2 = du2 + e2A(u)ηµνdxµdxν , ϕ = ϕ(u)

6Ä+ ϕ̇2 = 0, 12Ȧ2 − 1

2
ϕ̇2 + V (ϕ) = 0.
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Bulk equations

S5 = M3

∫

d4x

∫

du
√
−g

[

R− 1

2
gab∂aϕ∂bϕ− V (ϕ)

]

Vacuum (Poincaré invariant) solutions:

ds2 = du2 + e2A(u)ηµνdxµdxν , ϕ = ϕ(u)

6Ä+ ϕ̇2 = 0, 12Ȧ2 − 1

2
ϕ̇2 + V (ϕ) = 0.

One has to solve independently on each side of the defect (at

u = u0), and glue the solutions using Israel junction conditions:

[

A
]

=
[

ϕ
]

= 0;
[

Ȧ
]

= −1

6
WB(ϕ(u0));

[

ϕ̇
]

=
dWB

dϕ
(ϕ(u0))
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Vacuum Geometry

AUV (u),ϕUV (u) AIR(u),ϕIR(u)

eAUV → +∞, ϕUV → 0
UV-AdS boundary

eAIR → 0, ϕIR → ϕ∗

Interior of IR-AdS space

Holographic self-tuning of the cosmological constant – p.16
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (ϕ) (′ = d/dϕ):

Ȧ = −1

6
W (ϕ) Φ̇ = W ′(ϕ),

− d

4(d− 1)
W 2 +

1

2

(

W ′)2 = V
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (ϕ) (′ = d/dϕ):

Ȧ = −1

6
W (ϕ) Φ̇ = W ′(ϕ),

− d

4(d− 1)
W 2 +

1

2

(

W ′)2 = V

• Up to a rescaling of the scale factor, W completely determines

the geometry.
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Superpotential

Write Einstein’s equations as first order flow equations, with an

auxiliary scalar function W (ϕ) (′ = d/dϕ):

Ȧ = −1

6
W (ϕ) Φ̇ = W ′(ϕ),

− d

4(d− 1)
W 2 +

1

2

(

W ′)2 = V

• Up to a rescaling of the scale factor, W completely determines

the geometry.

W (ϕ) =

{

WUV (ϕ) ϕ < ϕ0

W IR(ϕ) ϕ > ϕ0

• On each side of the interface (ϕ = ϕ0), W is determined by one

integration consntant C.
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Junction conditions for the superpotential

Junction conditions take a simple form:

W IR(ϕ0)−WUV (ϕ0) = WB(ϕ0),
dWUV

dϕ
(ϕ0)−

dW IR

dϕ
(ϕ0) =

dWB

dϕ
(ϕ0)
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Junction conditions for the superpotential

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.
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Junction conditions for the superpotential

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.

IR side: Only certain IRs are acceptable (e.g. IR AdS fixed

point) This picks out a single solution W IR
∗ and fixes CIR = C∗
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IR Selection

UV side: Solutions arrive at the AdS fixed point for all values

of the integration constant CUV : UV fixed point is an attractor.

IR side: Only certain IRs are acceptable (e.g. IR AdS fixed

point) This picks out a single solution W IR
∗ and fixes CIR = C∗

Holographic self-tuning of the cosmological constant – p.20
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Equilibrium solution

WUV (ϕ0) = W IR
∗ (ϕ0)−WB(ϕ0),

dWUV

dϕ
(ϕ0) =

dW IR
∗

dϕ
(ϕ0)−

dWB

dϕ
(ϕ0)

Two equations for two unknowns CUV ,ϕ0. Generically there

exist a unique (or a discrete set of) solutions with CUV ,ϕ0

determined.
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(ϕ0) =

dW IR
∗

dϕ
(ϕ0)−

dWB

dϕ
(ϕ0)

Two equations for two unknowns CUV ,ϕ0. Generically there

exist a unique (or a discrete set of) solutions with CUV ,ϕ0

determined.

Holographic self-tuning of the cosmological constant – p.22



Equilibrium solution

WUV (ϕ0) = W IR
∗ (ϕ0)−WB(ϕ0),

dWUV

dϕ
(ϕ0) =

dW IR
∗

dϕ
(ϕ0)−

dWB

dϕ
(ϕ0)

For generic brane vacuum energy ∼ Λ4, geometry and brane

position adjust so that the brane is flat and the UV glues to the

regular IR (self-tuning).
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?

0

! "
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?

Recall Randall-Sundrum type braneworld

u0

u

e
A !u"

• Volume is finite on both sides ⇒ Normalizable 4d graviton zero

mode mediates 4d gravity at large distances
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Emergent gravity on the brane

In the model considered, solutions with flat 4d brane are generic. Do

gravitational interactions between brane sources look 4d?

Recall Randall-Sundrum type braneworld

u0

u

e
A !u"

• Volume is finite on both sides ⇒ Normalizable 4d graviton zero

mode mediates 4d gravity at large distances

• Brane connects two “IR” special solutions ⇒ Need fine-tuning

of the brane tension for the brane to stay flat.

⇒ self-tuning impossible
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Emergent gravity on the brane

“Holographic” asymmetric braneworld:

u0

u

e
A !u"

• Can choose generic “UV” solutions ⇒ self-tuning possible
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Emergent gravity on the brane

“Holographic” asymmetric braneworld:

u0

u

e
A !u"

• Can choose generic “UV” solutions ⇒ self-tuning possible

• Volume is infinite on the UV side ⇒ No Normalizable 4d

graviton zero mode.
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Emergent gravity on the brane

“Holographic” asymmetric braneworld:

u0

u

e
A !u"

S = M3

∫

du d4x
√
gR5 + . . .+M3

∫

u=u0

d4x
√
γU(ϕ0)R4
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Emergent gravity on the brane

“Holographic” asymmetric braneworld:

u0

u

e
A !u"

S = M3

∫

du d4x
√
gR5 + . . .+M3

∫

u=u0

d4x
√
γU(ϕ0)R4

• Localized Einstein-Hilbert term on the brane ⇒ 4d-like

graviton resonance (Dvali,Gabadadze,Porrati, ’00): gravity is effectively

4d at short distances.

• Bulk curvature ⇒ 4d massive graviton at very large distances.

Holographic self-tuning of the cosmological constant – p.29



Scales of braneworld gravity

Two competing scales:

1. “DGP” transition length: rc ≈ U(ϕ0)

2. Bulk curvature length rt = (eA0R0)−1, R0 ≈ WUV (ϕ0)
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Scales of braneworld gravity

Two competing scales:

1. “DGP” transition length: rc ≈ U(ϕ0)

2. Bulk curvature length rt = (eA0R0)−1, R0 ≈ WUV (ϕ0)

• rt > rc

• rt < rc

M2
p ≈ M3U0, m2

g ≈ R0

U0 Holographic tuning of the cosmological constant – p.24



Effective 4d Green’s function

Introuce tensor perturbations:

δgµν = e2A(r)hµν(r, x
α), hµµ = ∂µhµν = 0

Solve classical linearized equation for tensor fluctuations with

localized source:

hµν(x, r) =

∫

d4xG ρσ
µν (x− x′; r, r0)Tρσ(x

′, r0),

Tree-level interaction described in purely 4d terms by an effective

Green’s function:

Sint(T ) =

∫

d4p

(2π)4
G̃4(p)

[

Tµν(p)T
µν(−p)− 1

3
T (p)T (−p)

]

G4(x) ≡ G(x, r0, r0).
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Brane-to-brane propagator

Solution in terms of Green’s function:

h(x, r) =

∫

d4xG(x− x′; r, r0)T̂ (x
′, r0),

G̃(r, p; r0) = − 1

M3

D(p, r)

1 + [U0D(p, r0)]p2

[

∂re
3A(r)∂r − e3A(r)p2

]

D(p, r) = −δ(r − r0)
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Brane-to-brane propagator

Solution in terms of Green’s function:

h(x, r) =

∫

d4xG(x− x′; r, r0)T̂ (x
′, r0),

G̃(r, p; r0) = − 1

M3

D(p, r)

1 + [U0D(p, r0)]p2

[

∂re
3A(r)∂r − e3A(r)p2

]

D(p, r) = −δ(r − r0)

D(p, r) is the bulk-to-bulk propagator, and depends only on

properties of bulk modes.
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Brane-to-brane propagator

D(r0, p) ≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p
p ≫ R0,

d0 + d2p2 + . . . p ≪ R0,

R0 = bulk curvature around the brane position ≈ W0
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DGP-like behavior

D(r0, p) ≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p
p ≫ R0,

d0 + d2p2 + . . . p ≪ R0,

⇒ G(r0, p; r0) ≈
1

M3

1

2p+ U0p2
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DGP-like behavior

D(r0, p) ≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p
p ≫ R0,

d0 + d2p2 + . . . p ≪ R0,

⇒ G(r0, p; r0) ≈
1

M3

1

2p+ U0p2

≈ 1

2M3U0

1

p2
p ≫ U−1

0

• Four dimensional interaction at distances ≪ rc ≡ U0/2

• Effective four-dimensional Planck scale

M2
p = U0M

3

.
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Massive gravity

D(r0, p) ≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p
p ≫ R0,

d0 + d2p2 + . . . p ≪ R0,

⇒ G(r0, p; r0) ≈
1

M̃2
p

1

p2 +m2
g
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Massive gravity

D(r0, p) ≃

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2p
p ≫ R0,

d0 + d2p2 + . . . p ≪ R0,

⇒ G(r0, p; r0) ≈
1

M̃2
p

1

p2 +m2
g

• Massive gravity at large distances,

m2
g ≃ 1

d0Ũ0
, M̃2

p = M3Ũ0

Ũ0 ≡ U0

(

1− d2
U0d20

)

.
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4d-5d transition

rc < rt: DGP-like transition, at intermediate distances.

rc = U0, rt =
e−A0

R0
, M2

p ≈ M3U0, m2
0 ≈

R0

U0
,
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Massless/Massive gravity transition

rc > rt massive graviton propagator all the way.

rc = U0, rt =
e−A0

R0
, M2

p ≈ M3U0, m2
0 ≈

R0

U0
,
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Analysis of linear flucutations show that there exist conditions

on the background solution which guarantee stability.

1.

τ0 > 0, Z0 > 0, Z0τ0 > 36

(

dUB

dϕ

∣

∣

∣

ϕ0

)2

τ0 ≡ 6

(

6
WB

WIRWUV
− U

)

ϕ0

, Z0 ≡ Z(ϕ0)

⇒ No ghost instabilities
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Analysis of linear flucutations show that there exist conditions

on the background solution which guarantee stability.

2.

M̃2 ≡

(

d2WB

dϕ2
(ϕ0)−

[

d2W

dϕ2

]IR

UV

)

≥ 0

⇒ No tachyonic instabilities.

Holographic self-tuning of the cosmological constant – p.35



Conclusion and outlook
We constructed a framework where Self-tuning of the CC is

generically realized. Challenge now is model-building: construct

phenomenologically viable model.

• Acceptable values of Mp, rc, mg given large UV cutoff;

• Compliance with stability requirements;

• Deal with vDVZ discontinuity (Role of non-linearities,

Veinshtein mechanism);

• Avoidance of fifth force constraints;
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Conclusion and outlook
We constructed a framework where Self-tuning of the CC is

generically realized. Challenge now is model-building: construct

phenomenologically viable model.

• Acceptable values of Mp, rc, mg given large UV cutoff;

• Compliance with stability requirements;

• Deal with vDVZ discontinuity (Role of non-linearities,

Veinshtein mechanism);

• Avoidance of fifth force constraints;

If this all goes through, one can do more phenomenology:

• Add SM and Higgs field (ongoing work with Lukas Witkowski)

• Study the space of solutions: non-flat brane, time-dependent

solutions (cosmology) (ongoing work with Lukas Witkowski and Jewel Ghosh)

• Understand self-tuning from a dinamical perspective
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What about Weinberg?

Weinberg’s no-go theorem (’89): no self-tuning possible with

scalars.
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What about Weinberg?

Weinberg’s no-go theorem (’89): no self-tuning possible with

scalars.

Take generic S[γµν ,φ] and assume existence of a Poincaré

invariant solution:

⇒ S[γµν ,φ] =

∫

d4x
√
γV (ϕ)
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What about Weinberg?

Weinberg’s no-go theorem (’89): no self-tuning possible with

scalars.

Take generic S[γµν ,φ] and assume existence of a Poincaré

invariant solution:

⇒ S[γµν ,φ] =

∫

d4x
√
γV (ϕ)

δS

δγµν
=
δS

δφ
= 0 ⇒ V (φ) = V ′(φ) = 0

System is over-constraint and will generically have no solution,

unless V (φ) is fine-tuned.
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What about Weinberg?

In the holographic brane-world we can “integrate out the bulk” and

get an effective 4d theory for the induced metric and scalar:
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What about Weinberg?

In the holographic brane-world we can “integrate out the bulk” and

get an effective 4d theory for the induced metric and scalar:

Seff [γµ,ν ,φ] =

∫

d4x
√
γVeff (ϕ0)

Veff (ϕ0) = WIR(ϕ0)−WUV (ϕ0;CUV )−WB(ϕ0)

CUV is a free parameter and it is not fixed by extremization nor

by the UV boundary conditions.
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What about Weinberg?

In the holographic brane-world we can “integrate out the bulk” and

get an effective 4d theory for the induced metric and scalar:

Seff [γµ,ν ,φ] =

∫

d4x
√
γVeff (ϕ0)

Veff (ϕ0) = WIR(ϕ0)−WUV (ϕ0;CUV )−WB(ϕ0)

CUV is a free parameter and it is not fixed by extremization nor

by the UV boundary conditions.

Veff = 0, V ′
eff = 0

Two equations for two unknowns (CUV ,ϕ0).
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Bulk:

δgrr = e2Aφ, δgrµ = e2A∂µB,

δgµν = e2A (2ηµνψ + 2∂µ∂νE) , ϕ = ϕ̄(r) + χ
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Scalar perturbations

• Determine whether vacuum solution (flat brane at r = r0) is

stable.

• Possible light scalar mediated interactions (fifth force,

violations of equivalence principle) ⇒ pheno constraints.

• Bulk:

δgrr = e2Aφ, δgrµ = e2A∂µB,

δgµν = e2A (2ηµνψ + 2∂µ∂νE) , ϕ = ϕ̄(r) + χ

• Brane:

r = r0 + ρ(x)
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Scalar perturbations

Gauge fixing, constraints

⇓

Reduce to the single bulk variable ψ(x, r)

Linearized equation in the bulk:

ψ′′ +

(

3A′ + 2
z′

z

)

ψ′ +!ψ = 0

z ≡ ϕ̄′

A′

Holographic tuning of the cosmological constant – p.34



Scalar perturbations

Gauge fixing, constraints

⇓

Reduce to the single bulk variable ψ(x, r)

Linearized equation in the bulk:

ψ′′ +

(

3A′ + 2
z′

z

)

ψ′ +!ψ = 0

z ≡ ϕ̄′

A′

ϕ̄(r0)ρ(x) = − [ψ]

[z−1]
,

[X] ≡ XIR(r0)−XUV (r0)
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Scalar perturbations

Linearized matching conditions:

[

zψ′] = −
(

6

a0

dUB

dϕ

∣

∣

∣

ϕ0

)

!
[z ψ]

[z]
− 1

a0

(

Z0!− a20M̃2
) [ψ]

[z−1]

[

z2ψ′] = 6

(

2
U0

a0
−
[ a

a′

]

)

!
[z ψ]

[z]
−
(

6

a0

dU

dϕ

∣

∣

∣

ϕ0

)

!
[ψ]

[z−1]

M̃2 =

(

d2WB

dϕ2
(ϕ0)−

[

d2W

dϕ2

]IR

UV

)

, Z0 ≡ Z(ϕ0), U0 ≡ U(ϕ0), a0 ≡ eA(r0)

Holographic tuning of the cosmological constant – p.35



Scalar perturbations

Linearized matching conditions:

[

zψ′] = −
(

6

a0

dUB

dϕ

∣

∣

∣

ϕ0

)

!
[z ψ]

[z]
− 1

a0

(

Z0!− a20M̃2
) [ψ]

[z−1]

[

z2ψ′] = 6

(

2
U0

a0
−
[ a

a′

]

)

!
[z ψ]

[z]
−
(

6

a0

dU

dϕ

∣

∣

∣

ϕ0

)

!
[ψ]

[z−1]

M̃2 =

(

d2WB

dϕ2
(ϕ0)−

[

d2W

dϕ2

]IR

UV

)

, Z0 ≡ Z(ϕ0), U0 ≡ U(ϕ0), a0 ≡ eA(r0)

both ψ and ψ′ must be discontinous at the brane.
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Scalar perturbations

Recast as a 2-component Sturm-Liouville problem:

Ψ(r, x) =

(

ψUV (r, x)

ψIR(r, x)

)

(

B(r)Ψ′
)′

+ B(r)∂µ∂µΨ = 0, r ̸= r0

Ψ′(r0) =
(

Γ1 + Γ2 ∂
µ∂µ
)

Ψ(r0),

B(r), Γ1, Γ2 are 2× 2 matrices:
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Scalar perturbations

Recast as a 2-component Sturm-Liouville problem:

Ψ(r, x) =

(

ψUV (r, x)

ψIR(r, x)

)

(

B(r)Ψ′
)′

+ B(r)∂µ∂µΨ = 0, r ̸= r0

Ψ′(r0) =
(

Γ1 + Γ2 ∂
µ∂µ
)

Ψ(r0),

B(r) =

(

e3AUV z2UV 0

0 e3AIRz2IR

)
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Scalar perturbations

Recast as a 2-component Sturm-Liouville problem:

Ψ(r, x) =

(

ψUV (r, x)

ψIR(r, x)

)

(

B(r)Ψ′
)′

+ B(r)∂µ∂µΨ = 0, r ̸= r0

Ψ′(r0) =
(

Γ1 + Γ2 ∂
µ∂µ
)

Ψ(r0),

Γ1 =
a0M̃2

[z]2

(

−z2IR z2IR
−z2UV z2UV

)
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Scalar perturbations

Recast as a 2-component Sturm-Liouville problem:

Ψ(r, x) =

(

ψUV (r, x)

ψIR(r, x)

)

(

B(r)Ψ′
)′

+ B(r)∂µ∂µΨ = 0, r ̸= r0

Ψ′(r0) =
(

Γ1 + Γ2 ∂
µ∂µ
)

Ψ(r0),

Γ2 =
1

[z]2a0

⎛

⎜

⎜

⎝

−12zIR
dUB

dϕ
+ τ0 + Z0z2IR 6

(

z2
IR

zUV
+ zIR

)

dUB

dϕ
− τ0

zIR
zUV

− Z0z2IR

−6

(

z2
UV

zIR
+ zUV

)

dUB

dϕ
+ τ0

zUV

zIR
+ Z0z2UV 12zUV

dUB

dϕ
− τ0 − Z0z2UV

⎞

⎟

⎟

⎠

τ0 ≡ 6

(

6 WB

WIRWUV

∣

∣

∣

ϕ0

− U0

)

Holographic tuning of the cosmological constant – p.39



Scalar perturbations

Recast as a 2-component Sturm-Liouville problem:

Ψ(r, x) =

(

ψUV (r, x)

ψIR(r, x)

)

(

B(r)Ψ′
)′

+ B(r)∂µ∂µΨ = 0, r ̸= r0

Ψ′(r0) =
(

Γ1 + Γ2 ∂
µ∂µ
)

Ψ(r0),

Solve with normalizable boundary conditions in the UV for

ψUV and in the IR for ψIR.
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Action for scalar fluctuations

S(2)
5 = −M3

2

∫

d4x

[

∫

dr
[

∂rΨ
† B(r)Θ(r) ∂rΨ + ∂µΨ

† B(r)Θ(r) ∂µΨ
]

+Ψ†(r0)ΣΓ1Ψ(r0) − ∂µΨ
†(r0)ΣΓ2 ∂

µΨ(r0)

]

Σ ≡

⎛

⎝

−e3AUV z2UV 0

0 e3AIRz2IR

⎞

⎠

r0

, Θ ≡

⎛

⎝

θ(r0 − r) 0

0 θ(r − r0)

⎞

⎠
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Action for scalar fluctuations

S(2)
5 = −M3

2

∫

d4x

[

∫

dr
[

∂rΨ
† B(r)Θ(r) ∂rΨ + ∂µΨ

† B(r)Θ(r) ∂µΨ
]

+Ψ†(r0)ΣΓ1Ψ(r0) − ∂µΨ
†(r0)ΣΓ2 ∂

µΨ(r0)

]

Σ ≡

⎛

⎝

−e3AUV z2UV 0

0 e3AIRz2IR

⎞

⎠

r0

, Θ ≡

⎛

⎝

θ(r0 − r) 0

0 θ(r − r0)

⎞

⎠
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Action for scalar fluctuations

S(2)
5 = −M3

2

∫

d4x

[

∫

dr
[

∂rΨ
† B(r)Θ(r) ∂rΨ + ∂µΨ

† B(r)Θ(r) ∂µΨ
]

+Ψ†(r0)ΣΓ1Ψ(r0) − ∂µΨ
†(r0)ΣΓ2 ∂

µΨ(r0)

]

Σ ≡

⎛

⎝

−e3AUV z2UV 0

0 e3AIRz2IR

⎞

⎠

r0

, Θ ≡

⎛

⎝

θ(r0 − r) 0

0 θ(r − r0)

⎞

⎠
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Action for scalar fluctuations

S(2)
5 = −M3

2

∫

d4x

[

∫

dr
[

∂rΨ
† B(r)Θ(r) ∂rΨ + ∂µΨ

† B(r)Θ(r) ∂µΨ
]

+Ψ†(r0)ΣΓ1Ψ(r0) − ∂µΨ
†(r0)ΣΓ2 ∂

µΨ(r0)

]

Σ ≡

⎛

⎝

−e3AUV z2UV 0

0 e3AIRz2IR

⎞

⎠

r0

, Θ ≡

⎛

⎝

θ(r0 − r) 0

0 θ(r − r0)

⎞

⎠

Decompose into radial eigenmodes with fixed “energy” m2:

Ψ(r, xµ) = Ψ(r)φ(x),

−B−1 d

dr

(

B(r)dΨ(r)

dr

)

= m2Ψ(r), Ψ′(r0) = Γ1 +m2Γ2Ψ(r0)
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Positivity (no ghosts)

⇒ Effective 4-d action for massive scalar modes:

S(2)
4 = −1

2
N
∫

d4x
(

∂µφ∂µφ+m2φ2
)

N =

∫

drΨ† BΘΨ +
(

[zψ]
[z] − [ψ]

[1/z]

)

K

(

[zψ]
[z]

− [ψ]
[1/z]

)

K ≡ a20

⎛

⎜

⎝

τ0 −6 dUB

dϕ

∣

∣

∣

ϕ0

−6 dUB

dϕ

∣

∣

∣

ϕ0

Z0

⎞

⎟

⎠
, τ0 ≡ 6

(

6
WB

WIRWUV

∣

∣

∣

ϕ0

− U0

)
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Positivity (no ghosts)

⇒ Effective 4-d action for massive scalar modes:

S(2)
4 = −1

2
N
∫

d4x
(

∂µφ∂µφ+m2φ2
)

N =

∫

drΨ† BΘΨ +
(

[zψ]
[z] − [ψ]

[1/z]

)

K

(

[zψ]
[z]

− [ψ]
[1/z]

)

K ≡ a20

⎛

⎜

⎝

τ0 −6 dUB

dϕ

∣

∣

∣

ϕ0

−6 dUB

dϕ

∣

∣

∣

ϕ0

Z0

⎞

⎟

⎠
, τ0 ≡ 6

(

6
WB

WIRWUV

∣

∣

∣

ϕ0

− U0

)

• Absence of ghost instabilities is guaranteed if:

τ0 > 0, Z0 > 0, Z0τ0 > 36

(

dUB

dϕ

∣

∣

∣

ϕ0

)2
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Stability (no tachyons)

The mass eigenvalues satisfy the relation:

m2N −Ψ†(r0)ΣΓ1Ψ(r0) ≥ 0, ΣΓ1 = a40
M̃2

[1/z]2

(

1 −1

−1 1

)
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Stability (no tachyons)

The mass eigenvalues satisfy the relation:

m2N −Ψ†(r0)ΣΓ1Ψ(r0) ≥ 0, ΣΓ1 = a40
M̃2

[1/z]2

(

1 −1

−1 1

)
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Stability (no tachyons)

The mass eigenvalues satisfy the relation:

m2N −Ψ†(r0)ΣΓ1Ψ(r0) ≥ 0, ΣΓ1 = a40
M̃2

[1/z]2

(

1 −1

−1 1

)

• Sufficient condition for absence of tachyonic instabilities

(m2 > 0):

M̃2 ≥ 0

M̃2 =

(

d2WB

dϕ2
(ϕ0)−

[

d2W

dϕ2

]IR

UV

)
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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Scalar-mediated interaction

Define metric and dilaton sources:

Tµν = − 2
√
γ

δSm

γµν
, O =

δSm

δϕ
.

Interaction between brane-localized sources:

Sint = −1

2

∫

d4q

(2π)4
T †(q)Gs(q)T (−q), T ≡

(

Tµ
µ, O

)

Gs(q) ≡
1

2M3
P
[

Σ
(

Γ1 + q2Γ2

)

+ D−1(r0; q)
]−1

P †

P ≡ −
zIRzUV

[z]

⎛

⎝

1
zIR

− 1
zUV

1 1

⎞

⎠ .

• Modes coupling to O can be parametrically heavy, m ≃ M .

• Modes coupling to T remain light.
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Example

V (ϕ) = −12−
(

∆(4−∆)

2
− b2

4

)

ϕ2 − V1 sinh
2 bϕ

2
,

• supports an AdS fixed point at ϕ = 0 (ℓUV = 1)

• good IR solution:

WIR(ϕ) ∼
√

2

(32/3)− b2
exp

bϕ

2
, ϕ→ +∞.
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How large can Λ be?

WB(ϕ) = Λ4

[

−1− ϕ

s
+
(ϕ

s

)2
]

b =
1
√
6
, ∆ = 3, V1 = 1

ϕ0 ≃ ϕ̄ ≈ 1.6 s

Holographic tuning of the cosmological constant – p.51

francesco nitti
solutions exist

francesco nitti

francesco nitti

francesco nitti

francesco nitti



Consistent self-tuining

Two possibilities:

WUV > 0 WUV < 0

Holographic tuning of the cosmological constant – p.46



Consistent self-tuining

Two possibilities:

WUV > 0 WUV < 0

Holographic tuning of the cosmological constant – p.46

francesco nitti


francesco nitti


francesco nitti
Needs fine tuning of the brane potential to 
join two “special” solutions

francesco nitti
Cfr. Randall-Sundrum setup
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