Massive gravitons in arbitrary spacetimes

Mikhail S. Volkov
LMPT, University of Tours, FRANCE

Orsay, Modern aspects of Gravity and Cosmology, 8-th November 2017
C.Mazuet and M.S.V. arXiv: 1708.03554

- Linear massive gravitons in curved space
- Cosmology
- Black holes

Massive fields in curved space

Spin 0. One has in Minkowski space

$$
\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \Phi=M^{2} \Phi
$$

To pass to curved space one replaces

$$
\eta_{\mu \nu} \Rightarrow g_{\mu \nu}, \quad \partial_{\mu} \Rightarrow \nabla_{\mu}
$$

which gives

$$
g^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \Phi=M^{2} \Phi
$$

Similarly for spins $1 / 2$ (Dirac), 1 (Proca), $3 / 2$ (Rarita-Schwinger). The procedure fails for the massive spin 2.

Massive spin 2 in flat space

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu} \quad \Rightarrow \quad E_{\mu \nu} \equiv 2 \delta G_{\mu \nu}+M^{2}\left(h_{\mu \nu}-\lambda h \eta_{\mu \nu}\right)=0
$$

or explicitly

$$
\begin{aligned}
E_{\mu \nu} & \equiv \partial^{\sigma} \partial_{\mu} h_{\sigma \nu}+\partial^{\sigma} \partial_{\nu} h_{\sigma \mu}-\square h_{\mu \nu}-\partial_{\mu} \partial_{\nu} h \\
& +\eta_{\mu \nu}\left(\square h-\partial^{\alpha} \partial^{\beta} h_{\alpha \beta}\right)+M^{2}\left(h_{\mu \nu}-\lambda h \eta_{\mu \nu}\right)=0 .
\end{aligned}
$$

One has $\partial^{\mu} \delta G_{\mu \nu} \equiv 0 \Rightarrow 4$ vector constraints

$$
\mathcal{C}_{\nu} \equiv \partial^{\mu} E_{\mu \nu}=M^{2}\left(\partial^{\mu} h_{\mu \nu}-\lambda \partial_{\nu} h\right)=0
$$

and also

$$
\mathcal{C}_{5}=\partial^{\nu} \mathcal{C}_{\nu}+M^{2} \eta^{\mu \nu} E_{\mu \nu}=M^{2}(1-\lambda) \square h+M^{4}(1-4 \lambda) h=0,
$$

which becomes constraint if $\lambda=1$.

$$
\begin{aligned}
\left(\square+M^{2}\right) h_{\mu \nu} & =0 \\
\partial^{\mu} h_{\mu \nu} & =0 \\
h & =0
\end{aligned}
$$

$\Rightarrow 10-5=5$ propagating DoF. For $\lambda \neq 1$ there are 6 DoF.
Passing to curved space via $\eta_{\mu \nu} \rightarrow g_{\mu \nu}$ and $\partial_{\mu} \rightarrow \nabla_{\mu}$ yields

$$
\begin{aligned}
E_{\mu \nu} & \equiv \nabla^{\sigma} \nabla_{\mu} h_{\sigma \nu}+\nabla^{\sigma} \nabla_{\nu} h_{\sigma \mu}-\square h_{\mu \nu}-\nabla_{\mu} \nabla_{\nu} h \\
& +g_{\mu \nu}\left(\square h-\nabla^{\alpha} \nabla^{\beta} h_{\alpha \beta}\right)+M^{2}\left(h_{\mu \nu}-h g_{\mu \nu}\right)=0 .
\end{aligned}
$$

This implies the 5 constraints

$$
\begin{aligned}
& \mathcal{C}_{\nu} \equiv \nabla^{\mu} E_{\mu \nu}=M^{2}\left(\nabla^{\mu} h_{\mu \nu}-\nabla_{\nu} h\right)=0, \\
& \mathcal{C}_{5}=\nabla^{\nu} \mathcal{C}_{\nu}+M^{2} g^{\mu \nu} E_{\mu \nu}=-3 M^{4} h=0
\end{aligned}
$$

but ONLY in vacuum or in Einstein space, for $R_{\mu \nu}=\Lambda g_{\mu \nu}$. Otherwise 6 DoF. What to do ?

Linear theory from the nonlinear one

Ghost-free massive gravity

Let $g_{\mu \nu}$ and $f_{\mu \nu}$ be the physical and reference metrics and

$$
\gamma_{\sigma}^{\mu} \gamma_{\nu}^{\sigma}=g^{\mu \sigma} f_{\sigma \nu}, \quad \gamma_{\mu \nu}=g_{\mu \sigma} \gamma_{\nu}^{\sigma}, \quad[\gamma]=\gamma_{\sigma}^{\sigma} .
$$

The equations are /dRGT, 2010/

$$
\begin{aligned}
\mathbf{E}_{\mu \nu} & \equiv G_{\mu \nu}(g)+\beta_{0} g_{\mu \nu}+\beta_{1}\left([\gamma] g_{\mu \nu}-\gamma_{\mu \nu}\right) \\
& +\beta_{2}|\gamma|\left(\left[\gamma^{-1}\right] \gamma_{\mu \nu}^{-1}-\gamma_{\mu \nu}^{-2}\right)+\beta_{3}|\gamma| \gamma_{\mu \nu}^{-1}=0 .
\end{aligned}
$$

Perturbing $g_{\mu \nu} \rightarrow g_{\mu \nu}+\delta g_{\mu \nu}$ then $\mathbf{E}_{\mu \nu} \rightarrow \mathbf{E}_{\mu \nu}+\delta \mathbf{E}_{\mu \nu}$ with $\delta \mathbf{E}_{\mu \nu}=\delta G_{\mu \nu}+\beta_{0} \delta g_{\mu \nu}+\beta_{1}\left([\delta \gamma] g_{\mu \nu}+[\gamma] \delta g_{\mu \nu}-\delta \gamma_{\mu \nu}\right)+\ldots$
where $\quad \delta \gamma^{\mu}{ }_{\sigma} \gamma^{\sigma}{ }_{\nu}+\gamma^{\mu}{ }_{\sigma} \delta \gamma^{\sigma}{ }_{\nu}=\delta g^{\mu \sigma} f_{\sigma \nu} \quad \Leftrightarrow \quad \delta \gamma \gamma+\gamma \delta \gamma=\delta g^{-1} f$.
Solution for $\delta \gamma^{\mu}{ }_{\sigma}$ in terms of $\delta g^{\mu \sigma}$ is very complicated /Deffayet et al./

Ghost-free massive gravity in tetrad formalism

Introducing two tetrads $e^{a}{ }_{\mu}$ and $\phi^{a}{ }_{\mu}$ such that

$$
g_{\mu \nu}=\eta_{a b} e^{a}{ }_{\mu} e_{\nu}^{b}, \quad f_{\mu \nu}=\eta_{a b} \phi_{\mu}^{a} \phi_{\nu}^{b},
$$

one has

$$
\gamma_{b}^{a}=\phi_{\sigma}^{a} e_{b}{ }^{\sigma}, \quad \gamma_{a b}=\eta_{a c} \gamma_{b}^{c}=\gamma_{b a}
$$

and the equations

$$
\begin{aligned}
\mathbf{E}_{a b} & \equiv G_{a b}+\beta_{0} \eta_{a b}+\beta_{1}\left([\gamma] \eta_{a b}-\gamma_{a b}\right) \\
& +\beta_{2}|\gamma|\left(\left[\gamma^{-1}\right] \gamma_{a b}^{-1}-\gamma_{a b}^{-2}\right)+\beta_{3}|\gamma| \gamma_{a b}^{-1}=0 .
\end{aligned}
$$

The idea is to linearize with respect to tetrad perturbations

$$
e^{a}{ }_{\mu} \rightarrow e^{a}{ }_{\mu}+\delta e^{a}{ }_{\mu} \quad \text { with } \quad \delta e^{a}{ }_{\mu}=X^{a}{ }_{b} e^{b}{ }_{\mu}
$$

and then project to $e_{a}{ }^{\mu}$ and express everything in terms of

$$
X_{\mu \nu}=\eta_{a b} e^{a}{ }_{\mu} \delta e_{\nu}^{b} \quad \Rightarrow \quad \delta g_{\mu \nu}=X_{\mu \nu}+X_{\nu \mu}
$$

Equations in the generic case

$$
E_{\mu \nu} \equiv \Delta_{\mu \nu}+\mathcal{M}_{\mu \nu}=0
$$

with the kinetic term

$$
\begin{aligned}
\Delta_{\mu \nu} & =\frac{1}{2} \nabla^{\sigma} \nabla_{\mu}\left(X_{\sigma \nu}+X_{\nu \sigma}\right)+\frac{1}{2} \nabla^{\sigma} \nabla_{\nu}\left(X_{\sigma \mu}+X_{\mu \sigma}\right) \\
& -\frac{1}{2} \square\left(X_{\mu \nu}+X_{\nu \mu}\right)-\nabla_{\mu} \nabla_{\nu} X \\
& +g_{\mu \nu}\left(\square X-\nabla^{\alpha} \nabla^{\beta} X_{\alpha \beta}+R^{\alpha \beta} X_{\alpha \beta}\right) \\
& -R_{\mu}^{\sigma} X_{\sigma \nu}-R_{\nu}^{\sigma} X_{\sigma \mu}
\end{aligned}
$$

and the mass term

$$
\begin{aligned}
\mathcal{M}_{\mu \nu}= & \beta_{1}\left(\gamma^{\sigma}{ }_{\mu} X_{\sigma \nu}-g_{\mu \nu} \gamma^{\alpha \beta} X_{\alpha \beta}\right) \\
+ & \beta_{2}\left\{-\gamma^{\alpha}{ }_{\mu} \gamma_{\nu}^{\beta} X_{\alpha \beta}-\left(\gamma^{2}\right)^{\alpha}{ }_{\mu} X_{\alpha \nu}+\gamma_{\mu \nu} \gamma_{\alpha \beta} X^{\alpha \beta}\right. \\
& \left.+[\gamma] \gamma^{\alpha}{ }_{\beta} X_{\alpha \nu}+\left(\left(\gamma^{2}\right)_{\alpha \beta} X^{\alpha \beta}-[\gamma] \gamma_{\alpha \beta} X^{\alpha \beta}\right) g_{\mu \nu}\right\} \\
+ & \beta_{3}|\gamma|\left(X_{\mu \sigma}\left(\gamma^{-1}\right)^{\sigma}{ }_{\nu}-[X]\left(\gamma^{-1}\right)_{\mu \nu}\right)
\end{aligned}
$$

$\gamma_{\mu \nu}$ is algebraically expressed in terms of background $G_{\mu \nu}$ and $g_{\mu \nu}$.

Equations for $\gamma_{\mu \nu}$

Background equations

$$
\begin{aligned}
& G_{\mu \nu}+\beta_{0} g_{\mu \nu}+\beta_{1}\left([\gamma] g_{\mu \nu}-\gamma_{\mu \nu}\right) \\
& +\beta_{2}|\gamma|\left(\left[\gamma^{-1}\right] \gamma_{\mu \nu}^{-1}-\gamma_{\mu \nu}^{-2}\right)+\beta_{3}|\gamma| \gamma_{\mu \nu}^{-1}=0
\end{aligned}
$$

can be viewed as cubic algebraic equations for $\gamma_{\mu \nu}$. For any $g_{\mu \nu}$ the solution is

$$
\gamma_{\mu \nu}(g)=\sum_{n, k=0}^{\infty} b_{n k}\left(\beta_{A}\right) R^{n}\left(R^{k}\right)_{\mu \nu}
$$

There are special values of β_{A} for which the sum is finite. How many propagating DoF are there ?

Constraints

There are 16 equations

$$
E_{\mu \nu} \equiv \Delta_{\mu \nu}+\mathcal{M}_{\mu \nu}=0
$$

for 16 components of $X_{\mu \nu}$. The imply the following 11 conditions:

$$
\begin{gathered}
\Delta_{[\mu \nu]}=0 \Rightarrow \mathcal{M}_{[\mu \nu]}=0 \Rightarrow 6 \text { algebraic constraints } \\
\mathcal{C}_{\nu}=\nabla^{\mu} E_{\mu \nu}=0 \Rightarrow 4 \text { vector constraints } \\
\mathcal{C}_{5}=\nabla_{\mu}\left(\left(\gamma^{-1}\right)^{\mu \nu} \mathcal{C}_{\nu}\right)+\frac{\beta_{1}}{2} E_{\alpha}^{\alpha}+\beta_{2} \gamma^{\mu \nu} E_{\mu \nu} \\
+\beta_{3} \frac{|\gamma|}{g^{00}}\left(\left(\gamma^{-1}\right)^{0 \alpha}\left(\gamma^{-1}\right)^{0 \beta}-\left(\gamma^{-1}\right)^{00}\left(\gamma^{-1}\right)^{\alpha \beta}\right) \\
\\
\left.\times\left(E_{\alpha \beta}-\frac{1}{2} g_{\alpha \beta}\left(E_{\sigma}^{\sigma}-\frac{1}{g^{00}} E^{00}\right)\right)\right)=0 \Rightarrow \text { scalar constraint }
\end{gathered}
$$

The number of DoF is $16-6-4-1=5$.

Two special models

Models I and II

Background equations

$$
\begin{aligned}
& G_{\mu \nu}+\beta_{0} g_{\mu \nu}+\beta_{1}\left([\gamma] g_{\mu \nu}-\gamma_{\mu \nu}\right) \\
& +\beta_{2}|\gamma|\left(\left[\gamma^{-1}\right] \gamma_{\mu \nu}^{-1}-\gamma_{\mu \nu}^{-2}\right)+\beta_{3}|\gamma| \gamma_{\mu \nu}^{-1}=0
\end{aligned}
$$

are non-linear in $\gamma_{\mu \nu}$. There are two exceptional cases:
Model I: $\beta_{2}=\beta_{3}=0$,

$$
G_{\mu \nu}+\beta_{0} g_{\mu \nu}+\beta_{1}\left([\gamma] g_{\mu \nu}-\gamma_{\mu \nu}\right),
$$

which can be resolved with respect to $\gamma_{\mu \nu}$;
Model II: $\beta_{1}=\beta_{2}=0$,

$$
G_{\mu \nu}+\beta_{0} g_{\mu \nu}+\beta_{3}|\gamma| \gamma_{\mu \nu}^{-1}=0
$$

which can be resolved with respect to $|\gamma| \gamma_{\mu \nu}^{-1}$.

Equations for the two special models

$$
E_{\mu \nu} \equiv \Delta_{\mu \nu}+\mathcal{M}_{\mu \nu}=0
$$

with the kinetic term

$$
\begin{aligned}
\Delta_{\mu \nu} & =\frac{1}{2} \nabla^{\sigma} \nabla_{\mu}\left(X_{\sigma \nu}+X_{\nu \sigma}\right)+\frac{1}{2} \nabla^{\sigma} \nabla_{\nu}\left(X_{\sigma \mu}+X_{\mu \sigma}\right) \\
& -\frac{1}{2} \square\left(X_{\mu \nu}+X_{\nu \mu}\right)-\nabla_{\mu} \nabla_{\nu} X \\
& +g_{\mu \nu}\left(\square X-\nabla^{\alpha} \nabla^{\beta} X_{\alpha \beta}+R^{\alpha \beta} X_{\alpha \beta}\right) \\
& -R_{\mu}^{\sigma} X_{\sigma \nu}-R_{\nu}^{\sigma} X_{\sigma \mu}
\end{aligned}
$$

and the mass term (M being the FP mass)
model I: $\quad \mathcal{M}_{\mu \nu}=\gamma_{\mu \alpha} X_{\nu}^{\alpha}-g_{\mu \nu} \gamma_{\alpha \beta} X^{\alpha \beta}$,

$$
\gamma_{\mu \nu}=R_{\mu \nu}+\left(M^{2}-\frac{R}{6}\right) g_{\mu \nu}
$$

model II: $\mathcal{M}_{\mu \nu}=-X_{\mu}^{\alpha} \gamma_{\alpha \nu}+X \gamma_{\mu \nu}$,

$$
\gamma_{\mu \nu}=R_{\mu \nu}-\left(M^{2}+\frac{R}{2}\right) g_{\mu \nu}
$$

Action

$$
I=\frac{1}{2} \int X^{\nu \mu} E_{\mu \nu} \sqrt{-g} d^{4} x \equiv \int L \sqrt{-g} d^{4} x
$$

(order of indices !) with $L=L_{(2)}+L_{(0)}$ where

$$
\begin{aligned}
L_{(2)}= & -\frac{1}{4} \nabla^{\sigma} \mathcal{X}^{\mu \nu} \nabla_{\mu} \mathcal{X}_{\nu \sigma}+\frac{1}{8} \nabla^{\alpha} \mathcal{X}^{\mu \nu} \nabla_{\alpha} \mathcal{X}_{\mu \nu} \\
& +\frac{1}{4} \nabla^{\alpha} \mathcal{X} \nabla^{\beta} \mathcal{X}_{\alpha \beta}-\frac{1}{8} \nabla_{\alpha} \mathcal{X} \nabla^{\alpha} \mathcal{X}
\end{aligned}
$$

with $\mathcal{X}_{\mu \nu}=X_{\mu \nu}+X_{\nu \mu}$ and $\mathcal{X}=\mathcal{X}_{\alpha}^{\alpha}$. One has in model I

$$
\begin{aligned}
L_{(0)}= & -\frac{1}{2} X^{\mu \nu} R_{\mu}^{\sigma} X_{\sigma \nu} \\
& +\frac{1}{2}\left(M^{2}-\frac{R}{6}\right)\left(X_{\mu \nu} X^{\nu \mu}-X^{2}\right)
\end{aligned}
$$

and in model II

$$
\begin{aligned}
L_{(0)}= & -\frac{1}{2} X^{\mu \nu} R^{\sigma}{ }_{\mu} X_{\sigma \nu}-\frac{1}{2} X^{\mu \nu} R_{\nu}^{\sigma} X_{\sigma \mu} \\
& -\frac{1}{2} X^{\mu \nu} X_{\nu \alpha} R_{\mu}^{\alpha}+X R_{\mu \nu} X^{\mu \nu}+\frac{1}{2}\left(M^{2}+\frac{R}{2}\right)\left(X_{\mu \nu} X^{\nu \mu}-X^{2}\right)
\end{aligned}
$$

Constraints

Algebraic constraints

$$
E_{\mu \nu} \equiv \Delta_{\mu \nu}+\mathcal{M}_{\mu \nu}=0
$$

are 16 equations for 16 components of $X_{\mu \nu}$. One has $\Delta_{\mu \nu}=\Delta_{\nu \mu}$ hence one should have

$$
\mathcal{M}_{[\mu \nu]}=0
$$

which yields 6 algebraic conditions

$$
\begin{aligned}
\text { Model I: } & \gamma_{\mu \alpha} X_{\nu}^{\alpha} & =\gamma_{\nu \alpha} X_{\mu}^{\alpha} \\
\text { Model II: } & X_{\mu}^{\alpha} \gamma_{\alpha \nu} & =X_{\nu}^{\alpha} \gamma_{\alpha \mu}
\end{aligned}
$$

which reduce the number of independent components of $X_{\mu \nu}$ to 10 .

Differential constraints, model I

with

$$
\gamma_{\mu \nu}=R_{\mu \nu}+\left(M^{2}-\frac{R}{6}\right) g_{\mu \nu}
$$

one obtains the four vector constraints

$$
\mathcal{C}^{\rho} \equiv\left(\gamma^{-1}\right)^{\rho \nu} \nabla^{\mu} E_{\mu \nu}=\nabla_{\sigma} X^{\sigma \rho}-\nabla^{\rho} X+\mathcal{I}^{\rho}=0
$$

with

$$
\mathcal{I}^{\rho}=\left(\gamma^{-1}\right)^{\rho \nu}\left\{X^{\alpha \beta}\left(\nabla_{\alpha} G_{\beta \nu}-\nabla_{\nu} \gamma_{\alpha \beta}\right)+\nabla^{\mu} \gamma_{\mu \alpha} X_{\nu}^{\alpha}\right\}
$$

Next

$$
\begin{aligned}
\mathcal{C}_{5} & \equiv \nabla_{\rho} \mathcal{C}^{\rho}+\frac{1}{2} E^{\mu}{ }_{\mu} \\
& =-\frac{3}{2} M^{2} X-\frac{1}{2} G^{\mu \nu} X_{\mu \nu}+\nabla_{\rho} \mathcal{I}^{\rho}=0
\end{aligned}
$$

\Rightarrow the number of DoF is $10-5=5$.

Differential constraints, model II

With

$$
\gamma_{\mu \nu}=R_{\mu \nu}-\left(M^{2}+\frac{R}{2}\right) g_{\mu \nu}
$$

one has

$$
\mathcal{C}^{\rho} \equiv \gamma^{\rho \nu} \nabla^{\mu} E_{\mu \nu}=\Sigma^{\rho \nu \alpha \beta} \nabla_{\nu} X_{\alpha \beta}=0
$$

with $\sum^{\rho \nu \alpha \beta} \equiv \gamma^{\rho \nu} \gamma^{\alpha \beta}-\gamma^{\rho \beta} \gamma^{\nu \alpha}$ and

$$
\begin{aligned}
\mathcal{C}_{5} & \equiv \nabla_{\rho} \mathcal{C}^{\rho} \\
& +\frac{1}{2 g^{00}} \Sigma^{00 \alpha}{ }_{\beta}\left(2 E_{\alpha}^{\beta}-\delta_{\alpha}^{\beta}\left(E_{\sigma}^{\sigma}-\frac{1}{g^{00}} E^{00}\right)\right)=0 .
\end{aligned}
$$

This does not contain the second time derivative \Rightarrow constraint.

Einstein space background

Einstein spaces, massless limit

If

$$
R_{\mu \nu}=\Lambda g_{\mu \nu} \quad \Rightarrow \quad \gamma_{\mu \nu} \propto g_{\mu \nu} \quad \Rightarrow \quad X_{\mu \nu}=X_{\nu \mu}
$$

the equations reduce to

$$
\Delta_{\mu \nu}+M_{\mathrm{H}}^{2}\left(X_{\mu \nu}-X_{g_{\mu \nu}}\right)=0
$$

where the Higuchi mass

$$
\text { I: } \quad M_{\mathrm{H}}^{2}=\Lambda / 3+M^{2}, \quad \text { II: } \quad M_{\mathrm{H}}^{2}=\Lambda+M^{2}
$$

If $M_{H}=0$ then equations admit the (diff) gauge symmetry

$$
X_{\mu \nu} \rightarrow X_{\mu \nu}+\nabla_{(\mu} \xi_{\nu)}
$$

which reduces the number of DoF: $10 \rightarrow 2=$ massless limit.

For $M_{H} \neq 0$ the divergence of the equations yields four constraints

$$
\nabla^{\mu} X_{\mu \nu}=\nabla_{\nu} X
$$

equations reduce to
$-\square X_{\mu \nu}+\nabla_{\mu} \nabla_{\nu} X-2 R_{\mu \alpha \nu \beta} X^{\alpha \beta}+\Lambda X g_{\mu \nu}+M_{\mathrm{H}}^{2}\left(X_{\mu \nu}-X g_{\mu \nu}\right)=0$.
Tracing this yields

$$
\begin{gathered}
\left(2 \Lambda-3 M_{\mathrm{H}}^{2}\right) X=0 \quad \Rightarrow \quad X=0 \\
\Rightarrow 10-5=5 \text { DoF. If } M_{\mathrm{H}}^{2}=2 \Lambda / 3 \equiv M_{\mathrm{PM}}^{2} \Rightarrow \text { gauge symmetry } \\
X_{\mu \nu} \rightarrow X_{\mu \nu}+\nabla_{\mu} \nabla_{\nu} \Omega+(\Lambda / 3) g_{\mu \nu} \Omega
\end{gathered}
$$

\Rightarrow there remain only $4=10-1-1$ DoF $=$ partially massless case.

- Six algebraic conditions and five differential constraints $\mathcal{C}^{\rho}=0$ and $\mathcal{C}_{5}=0$ reduce the number of independent components of $X_{\mu \nu}$ from 16 to 5 . This matches the number of polarizations of massive particles of spin 2.
- When restricted to Einstein spaces, the theory reproduces the standard description of massive gravitons.
- Unless in Einstein spaces, no massless (or partially massless) limit. For any value of the FP mass M the number of DoF on generic background is 5 .

Cosmological background

FLRW cosmology

Line element

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-d t^{2}+a^{2}(t) d \mathbf{x}^{2}
$$

where $a(t)$ fulfills the Einstein equations

$$
3 \frac{\dot{a}^{2}}{a^{2}}=\frac{\rho}{M_{\mathrm{Pl}}^{2}} \equiv \rho, \quad 2 \frac{\ddot{a}}{a}+\frac{\dot{a}^{2}}{a^{2}}=-\frac{\boldsymbol{p}}{M_{\mathrm{Pl}}^{2}} \equiv-p .
$$

Here M_{Pl} is the Planck mass and $\boldsymbol{\rho}, \boldsymbol{p}$ are the energy density and pressure of the background matter.

$$
X_{\mu \nu}(t, \mathbf{x})=a^{2}(t) \sum_{\mathbf{k}} X_{\mu \nu}(t, \mathbf{k}) e^{i \mathbf{k} \mathbf{x}}
$$

where the Fourier amplitude splits into the sum of the tensor, vector, and scalar harmonics,

$$
X_{\mu \nu}(t, \mathbf{k})=X_{\mu \nu}^{(2)}+X_{\mu \nu}^{(1)}+X_{\mu \nu}^{(0)}
$$

The spatial part of the background Ricci tensor $R_{i k} \sim \delta_{i k}$ hence

$$
X_{i k}=X_{k i}
$$

$\Rightarrow X_{\mu \nu}$ has only 13 independent components. Assuming the spatial momentum \mathbf{k} to be directed along the third axis, $\mathbf{k}=(0,0, \mathrm{k})$, the harmonics are

$$
\begin{gathered}
X_{\mu \nu}^{(2)}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \mathrm{D}_{+} & \mathrm{D}_{-} & 0 \\
0 & \mathrm{D}_{-} & -\mathrm{D}_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right], X_{\mu \nu}^{(1)}=\left[\begin{array}{cccc}
0 & W_{+}^{+} & W_{-}^{+} & 0 \\
W_{+}^{-} & 0 & 0 & i \mathrm{kV} V_{+} \\
W_{-}^{-} & 0 & 0 & i \mathrm{kV} \\
0 & i \mathrm{kV}_{+} & i \mathrm{kV} & 0
\end{array}\right], \\
X_{\mu \nu}^{(0)}=\left[\begin{array}{cccc}
S_{+}^{+} & 0 & 0 & i \mathrm{k} S_{-}^{+} \\
0 & S_{-}^{-} & 0 & 0 \\
0 & 0 & S_{-}^{-} & 0 \\
i \mathrm{k} S_{+}^{-} & 0 & 0 & S_{-}^{-}-\mathrm{k}^{2} \mathrm{~S}
\end{array}\right]
\end{gathered}
$$

where $\mathrm{D}_{ \pm}, \mathrm{V}_{ \pm}, \mathrm{S}, W_{ \pm}^{ \pm}, S_{ \pm}^{ \pm}$are 13 functions of time. The equations split into three independent groups - one for the tensor modes $X_{\mu \nu}^{(2)}$, one for vector modes $X_{\mu \nu}^{(1)}$, and one for scalar modes $X_{\mu \nu}^{(0)}$.

The effective action is

$$
I_{(2)}=\int\left(K \dot{\mathrm{D}}_{ \pm}^{2}-U \mathrm{D}_{ \pm}^{2}\right) a^{3} d t
$$

with

$$
K=1, \quad U=M_{\mathrm{eff}}^{2}+\mathrm{k}^{2} / a^{2}
$$

where

$$
\begin{aligned}
\text { I }: & M_{\mathrm{eff}}^{2}=M^{2}+\frac{1}{3} \rho, \quad m_{\mathrm{H}}^{2}=M_{\mathrm{eff}}^{2} \\
\text { II }: & M_{\mathrm{eff}}^{2}=M^{2}-p, \quad m_{\mathrm{H}}^{2}=M^{2}+\rho
\end{aligned}
$$

m_{H} reduces to the Higuchi mass in the Einstein space limit.

Vector sector

4 auxiliary amplitudes are expressed in terms of two $\mathrm{V}_{ \pm}$

$$
W_{ \pm}^{+}=\frac{\mathrm{P}^{2} m_{\mathrm{H}}^{2} \dot{\mathrm{~V}}_{ \pm}}{m_{\mathrm{H}}^{4}+\mathrm{P}^{2}\left(m_{\mathrm{H}}^{2}-\epsilon / 2\right)}, \quad W_{ \pm}^{-}=\frac{\mathrm{P}^{2}\left[m_{\mathrm{H}}^{2}-\epsilon\right] \dot{\mathrm{V}}_{ \pm}}{m_{\mathrm{H}}^{4}+\mathrm{P}^{2}\left(m_{\mathrm{H}}^{2}-\epsilon / 2\right)},
$$

(with $\epsilon=\rho+p$) and the effective action

$$
I_{(1)}=\int\left(K \dot{\mathrm{~V}}_{ \pm}^{2}-U \mathrm{~V}_{ \pm}^{2}\right) a^{3} d t
$$

with

$$
\begin{aligned}
K & =\frac{\mathrm{k}^{2} m_{\mathrm{H}}^{4}}{m_{\mathrm{H}}^{4}+\left(\mathrm{k}^{2} / a^{2}\right)\left(m_{\mathrm{H}}^{2}-\epsilon / 2\right)} \\
U & =M_{\text {eff }}^{2} \mathrm{k}^{2}
\end{aligned}
$$

In Einstein spaces one has $m_{\mathrm{H}}=M_{\mathrm{H}}$ (Higuchi mass), vector modes do not propagate if $M_{\mathrm{H}}=0$ (massless limit). Otherwise $m_{\mathrm{H}} \neq$ const. \Rightarrow they always propagate.

Scalar sector - auxiliary amplitudes

4 auxiliary amplitudes are expressed in terms of one single S

$$
\begin{aligned}
S_{+}^{-} & =\frac{m_{\mathrm{H}}^{2}-\epsilon}{m_{\mathrm{H}}^{2}} S_{-}^{+} \\
S_{-}^{+} & =\frac{2}{m_{\mathrm{H}}^{2}}\left(\dot{S}_{-}^{-}+a^{2} H S_{+}^{+}\right) \\
S_{+}^{+} & =-\frac{1}{H a^{2}} \dot{S}_{-}^{-} \\
& +\frac{2 H m_{\mathrm{H}}^{4} \mathrm{P}^{2} \dot{\mathrm{~S}}+m_{\mathrm{H}}^{6} \mathrm{P}^{2} \mathrm{~S}-m_{\mathrm{H}}^{4}\left(2 \mathrm{P}^{2}+3 m_{\mathrm{H}}^{2}\right) S_{-}^{-} / a^{2}}{2 H^{2}\left[3 m_{\mathrm{H}}^{4}+2 \mathrm{P}^{2}\left(2 m_{\mathrm{H}}^{2}-\epsilon\right)\right]}
\end{aligned}
$$

with $H=\dot{a} / a$ while

$$
S_{-}^{-}=\mathcal{A} \dot{\mathrm{S}}+\mathcal{B} \mathrm{S}
$$

where \mathcal{A}, \mathcal{B} are complicated functions of the background scale factor a. The amplitude S fulfils one single master equation following from

Scalar sector - master equation

$$
I_{(0)}=\int\left(K \dot{S}^{2}-U S^{2}\right) a^{3} d t
$$

where the kinetic term
$K=\frac{3 \mathrm{k}^{4} m_{\mathrm{H}}^{4}\left(m_{\mathrm{H}}^{2}-2 H^{2}\right)}{\left(m_{\mathrm{H}}^{2}-2 H^{2}\right)\left[9 m_{\mathrm{H}}^{4}+6\left(\mathrm{k}^{2} / \mathrm{a}^{2}\right)\left(2 m_{\mathrm{H}}^{2}-\epsilon\right)\right]+4\left(\mathrm{k}^{4} / \mathrm{a}^{4}\right)\left(m_{\mathrm{H}}^{2}-\epsilon\right)}$
and the potential

$$
\begin{aligned}
& U / K \rightarrow M_{\text {eff }}^{2} \quad \text { as } \quad k \rightarrow 0 \\
& U / K \rightarrow c^{2}\left(\mathrm{k}^{2} / a^{2}\right) \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

where c is the sound speed. There is only one DoF in the scalar sector (!!!) In the Einstein space one has $m_{\mathrm{H}}=M_{\mathrm{H}}$ and the scalar mode does not propagate if either $M_{\mathrm{H}}=0$ (massless limit) or if $M_{\mathrm{H}}^{2}=2 \mathrm{H}^{2}$ (partially massless limit). In the generic case one has $m_{\mathrm{H}} \neq$ const. and it always propagates.

No ghost conditions

$$
\lim _{k \rightarrow \infty} K>0
$$

with

$$
\begin{aligned}
K_{(2)} & =1 \\
K_{(1)} & =\frac{\mathrm{k}^{2} m_{\mathrm{H}}^{4}}{m_{\mathrm{H}}^{4}+\left(\mathrm{k}^{2} / a^{2}\right)\left(m_{\mathrm{H}}^{2}-\epsilon / 2\right)}, \\
K_{(0)} & =\frac{3 \mathrm{k}^{4} m_{\mathrm{H}}^{4}\left(m_{\mathrm{H}}^{2}-2 \mathrm{H}^{2}\right)}{\left(m_{\mathrm{H}}^{2}-2 \mathrm{H}^{2}\right)\left[9 m_{\mathrm{H}}^{4}+6\left(\mathrm{k}^{2} / a^{2}\right)\left(2 m_{\mathrm{H}}^{2}-\epsilon\right)\right]+4\left(\mathrm{k}^{4} / a^{4}\right)\left(m_{\mathrm{H}}^{2}-\epsilon\right)}
\end{aligned}
$$

No tachyon conditions

$$
c^{2}>0
$$

with

$$
\begin{aligned}
& c_{(2)}^{2}=1 \\
& c_{(1)}^{2}=\frac{M_{\mathrm{eff}}^{2}}{m_{\mathrm{H}}^{4}}\left(m_{\mathrm{H}}^{2}-\epsilon / 2\right), \\
& c_{(0)}^{2}=\frac{\left(m_{\mathrm{H}}^{2}-\epsilon\right)\left[m_{\mathrm{H}}^{4}+\left(2 H^{2}-4 M_{\mathrm{eff}}^{2}-\epsilon\right) m_{\mathrm{H}}^{2}+4 H^{2} M_{\mathrm{eff}}^{2}\right]}{3 m_{\mathrm{H}}^{4}\left(2 H^{2}-m_{\mathrm{H}}^{2}\right)} .
\end{aligned}
$$

- Everything is stable if the background density is small, $\rho \leq M^{2} M_{\mathrm{Pl}}^{2}$.
- Model II is stable for any ρ if $w=\boldsymbol{p} / \boldsymbol{\rho}<-2 / 5 \Rightarrow$ stable during inflation.
- Model I is stable during the inflation if the Hubble rate is not very high, $H<M$.
- Both models are always stable after inflation if $M \geq 10^{13} \mathrm{GeV}$.
- Both models are stable now if $M \geq 10^{-3} \mathrm{eV}$.
- Assuming that $X_{\mu \nu}$ couples only to gravity and hence massive gravitons do not have other decay channels, it follows that they could be a part of Dark Matter (DM) at present.

Backreaction

$$
I=\frac{1}{2} \int\left(M_{P 1}^{2} R+X^{\nu \mu} E_{\mu \nu}\right) \sqrt{-g} d^{4} x .
$$

Varying this with respect to the $X_{\mu \nu}$ and $g_{\mu \nu}$ yields

$$
\begin{aligned}
M_{\mathrm{Pl}}^{2} G_{\mu \nu} & =T_{\mu \nu} \\
E_{\mu \nu} & =0,
\end{aligned}
$$

where the energy-momentum tensor $T_{\mu \nu}$ is rather complicated.
The only solution in the homogeneous and isotropic sector is found in model II and only for $M^{2}<0$: de Sitter with $\Lambda=-3 M^{2}>0$
\Rightarrow Massive gravitons in our model cannot mimic dark energy.

Other applications

- Holographic superconductors ... (?)
- Black hole solutions ?
- Boson star solutions ?

Spontaneous hair on black holes

Hairy black holes

- Einstein-Yang-Mills (+Higgs, dilaton) theory, Einstein-Skyrme (XX-th century)
- Scalars violating the energy conditions (phantom fields, negative potentials) (XXI-st century)
- Non-minimally coupled scalars (Horndeski) (XXI-st century)
- Non-linear massive gravity (XXI-st century)
- Spinning scalar clouds (XXI-st century)
/M.S.V. arXiv:1601.08230/
- Incident waves with $\omega<m \Omega_{\mathrm{H}}$ are amplified by a spinning black hole /Zel'dovich 1971/, /Starobinsky 1972/, /Bardeen, Press, Teukolsky 1972/
- If the black hole is surrounded by mirror walls, the field will be trapped inside the walls but its amplitude will grow - "black hole bomb" /Press, Teukolsky 1972/
- If the field has a mass μ then its modes with $|\omega|<\mu$ cannot escape to infinity and will stay close to the black hole /Damour, Deruelle, Ruffini 1976/. Such modes will be amplified but also absorbed by the black hole.

Black hole hair via superradiance

- If the amplification and absorption rates of massive modes are equal, this will lead to non-trivial stationary field clouds around spinning black holes.
- This suggests that spinning black holes may support massive hair and moreover, spontaneously grow it.
- First confirmation of this scenario - scalar Kerr clouds $=$ spinning black holes with massive complex scalar field /Herdeiro, Radu, 2014/.
- Next - spinning black holes with massive complex vector field /Herdeiro, Radu, Runarsson 2016/.

Black hole hair via superradiance

- First confirmation of the spontaneous growth phenomenon growth of massive complex vector field /East, Pretorius 2017/. As the supperadiance rate increases with spin, the vector massive hair grows faster than the scalar one - easier to simulate.
- However, the tensor hair should grow still faster. This suggest there should be spinning black holes with complex massive graviton hair. Complexification - replacing

$$
X^{\nu \mu} E_{\mu \nu} \rightarrow \bar{X}^{\nu \mu} E_{\mu \nu}+X^{\nu \mu} \bar{E}_{\mu \nu}
$$

in the action

$$
I=\frac{1}{2} \int\left(M_{\mathrm{Pl}}^{2} R+X^{\nu \mu} E_{\mu \nu}\right) \sqrt{-g} d^{4} x
$$

- The consistent theory of massive gravitons in arbitrary spacetimes presented in the form simple enough for practical applications.
- The theory is described by a non-symmetric rank-2 tensor whose equations of motion imply six algebraic and five differential constraints reducing the number of independent components to five.
- The theory reproduces the standard description of massive gravitons in Einstein spaces.
- In generic spacetimes it does not show the massless limit and always propagates five degrees of freedom, even for the vanishing mass parameter.
- The explicit solution for a homogeneous and isotropic cosmological background shows that the gravitons are stable, hence they may be a part of Dark Matter.
- An interesting open issue - possible existence of stationary black holes with massive graviton hair.

