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Inflation provides a set-up in 
which Lambda varies slowly

Motivation came from Thermodynamics 
with variable Lambda



Thermodynamics

A black hole has temperature, entropy, and satisfies a first 
law:


Can derive this by varying the Schwarzschild potential:





But we are used to 
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Thermodynamics and Lambda

Now vary the Schwarzschild potential with lambda:
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Varying Lambda

The idea of a varying Lambda is very familiar – in slow roll 
inflation, lambda varies gradually, while our universe is quasi-
de Sitter.






Small slow-roll parameters ensure that inflation in maintained:
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Add Black Hole
But a key difference is that our geometry is not explicitly time 
dependent – so what does “slow roll” mean? 



Without the black hole, the transformation to cosmological 
time is nontrivial:



And, apart from SDS, difficult to find time dependent black 
hole solutions 
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With Black Hole

With a black hole, intuition is that the geometry is 
approximately SDS, the scalar still slow-rolls, but that 
this produces a sub-leading effect on the background 
black hole geometry. The spacetime slides from one 
Lambda to a lower one, and the black hole accretes a 
little mass.
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To follow event horizons, use null coordinates:



See how leading order is Φ rolling on black hole background

Equations
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Background

Starting point is constant phi, and equations integrate 
up to give SDS in different gauge







Physically, easiest to set B=r2. U,V can be
Kruskals at each horizon.
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Scalar Field Eqn

In terms of the (shifted) null coordinates, e.o.m for phi is




Motivated by cosmological solution, look for a 
parameter, x, s.t. phi depends on x, at least to leading 
order slow-roll.
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Phi Equation

The phi equation is a standard slow-roll type



but with friction parameter modified from H:




Physical effect of black hole is to add friction to roll, or 
to slow down the scalar. 
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Phi Profile

And spatial profile 
is nontrivial…
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Phi behaviour
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Horizon Growth
Although the full back-reaction is messy, the solution at each 
horizon is simpler, e.g. black hole horizon:



Shows teleological behaviour of horizon, total area shift of 



Note


(fractional change in cosmological horizon area greater than 
that of black hole).
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Horizon Growth
From test case covered later, can compute the exact 
leading order horizon backreaction:
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Back To Scalar

Can find thermodynamics of the black hole (more 
later!), but go back to the dependence of the scalar, 
and relabel x-parameter as T.



T is constructed so that phi is regular at both horizons, 
with only in(out) going modes at black hole 
(cosmological) horizon.

T = t+ ⇠(r)



T looks like an Eddington-Finkelstein coord on each horizon, 
at rh a fn of v, and at rc a fn of U.
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Back-Reaction

Given this Eddington-Finkelstein behaviour, look at SDS metric 
in (T,r) coords:




Because of the behaviour of xi, this is regular at both (future) 
horizons, with T being more obviously related to cosmological 
time at large r.
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With this input, keep T as a coordinate, and make the metric 
Ansatz:




The energy momentum of the scalar has 2 independent cpts: 
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Which we relate to the Einstein tensor:
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rf

#
|gTT |

Grr =

"
� 1

r2
(1� f � rf 0) +

hḟ
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ḣf 0

2f
+

ḣ
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? Slow Roll ?
Need to have control of the slow-roll approximation to 
identify the key dependences in these equations.

The scalar equation is straightforward to see,




But the equivalent of Friedmann is: 
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Slow Roll with a Black Hole

Taking the same general slow roll requirements, these now 
depend on position:





As usual in slow-roll, take background values of metric 
functions, and can bound these r-dependent background 
functions to the usual slow roll type parameters
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This allows us to solve the Einstein equations to leading order in 
the slow-roll parameters.

Ø  TT + Tr:

implies




Where δf is order εΓ, but slowly varying. We can then integrate 
the φ kinetic energy:
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And end up with a familiar expression:





With 




A somewhat finicky argument shows that delta f is transient, and 
of sub-leading order (εΓ) to the changes in Λ  and M. 
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We can solve for h(r,T) as well, and we find that to leading 
order, for a slow roll scalar the black hole geometry takes 
its “Schwarzschild” form in the scalar T-coordinate (regular 
on both horizons) but with Λ and M now time varying.
We get a remarkably simple expression for the time-
dependence of the horizon areas:
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Thermodynamics

We can find exact, differential forms of the various 
thermodynamic first laws:

Ø De Sitter patch:

Ø Black hole first law:

Which of course begs the question of temperature..
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Dynamical Temperature 

Hayward et al suggested a dynamical temperature





Which we can calculate for our solution




i.e. the instantaneous temperature of the time-dependent 
SdS potential.
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Double well potential








Cosmological soln:

Explicit Example
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At black hole horizon in terms of E-F advanced time:





And write                        so that

Then can extract the behaviour of the horizon, directly 
depending on the gravitational strength of the scalar
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Horizon Growth

Horizon growth depends primarily on Δ but the rate of 
growth determined by the slow roll friction parameter




(I is the integral in the variation of B)
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Horizon Growth
Horizon growth depends primarily on Δ but the rate of 
growth determined by the slow roll friction parameter
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Dynamical T:
And temperature variation:
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Summary

§  Have generalised slow-roll description to non-
homogeneous black hole background.

§  The friction parameter for the scalar is increased by 
the black hole

§  Checked the first law – holds dynamically during the 
flow.

§  Explored dynamical temperature

§  The black hole geometry is to a very good 
approximation quasi-Schwarzschild de Sitter.


