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MOTIVATION CAME FROM THERMODYNAMICS
WITH VARIABLE LAMBDA
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INFLATION PROVIDES A SET-UP IN

WHICH LAMBDA VARIES SLOWLY




ack hole has temperature, entropy, and satisties a first

law:
OM =T0oS
Can derive this by varying the Schwarzschild potential:
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Now vary the Schwarzschild potential with lambda:
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Rearrange to
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e idea of a varying Lambda is very familiar — in slow ro
inflation, lambda varies gradually, while our universe is quasi-
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de Sitter.




ut a key difference is that our geometry is not explicitly time
dependent — so what does “slow roll” mean?
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Without the black hole, the transformation to cosmological
time is nontrivial:
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With a black hole, intuition is that the geometry is
approximately SDS, the scalar still slow-rolls, but that
this produces a sub-leading effect on the background
black hole geometry. The spacetime slides from one
Lambda to a lower one, and the black hole accretes a
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little mass.
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See how leading order is @ rolling on black hole background
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arting point is constant phi, and equations integrate
up to give SDS in different gauge
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Physically, easiest to set B=r2. U,V can be




N terms Oof the (Snirtea) null coordinates, €.0.Mm 10r pni Is
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Motivated by cosmological solution, look for a
parameter, X, s.t. phi depends on X, at least to leading
order slow-roll.
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but with friction parameter modified from H:
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Physical effect of black hole is to add friction to roll, or




And spatial profile
IS nontrivial...
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AltNoUgn the TUll baCKk-reaction IS messy, the Solution at eacr
horizon is simpler, e.g. black hole horizon:
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Shows teleological behaviour of horizon, total area shift of
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leading order horizon backreaction:
AlA;
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later!), but go back to the dependence of the scalar,
and relabel x-parameter as T.

T=t+&(r)

T is constructed so that phi is regular at both horizons,
with only in(out) going modes at black hole
(cosmological) horizon.




Cosmological Horizon
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in (T,r) coords:
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Because of the behaviour of xi, this is regular at both (future)
horizons, with T being more obviously related to cosmological
time at large r.
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The energy momentum of the scalar has 2 independent cpts:
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identify the key dependences in these equations.

The scalar equation is straightforward to see,
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But the equivalent of Friedmann is:
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Taking the same general slow roll requirements, these now
depend on position:
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As usual in slow-roll, take background values of metric
functions, and can bound these r-dependent background
functions to the usual slow roll type parameters
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A(T) = W[p(T)] M(T) = Mo — 4n3 (S:TVWV

A somewhat finicky argument shows that delta f is transient, and




We can solve for h(r,T) as well, and we find that to leading
order, for a slow roll scalar the black hole geometry takes
its “Schwarzschild” form in the scalar T-coordinate (regular
on both horizons) but with A and M now time varying.

We get a remarkably simple expression for the time-
dependence of the horizon areas:
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thermodynamic first laws:

» De Sitter patch:
k| Ap + |ke|Ae + VA =0

» Black hole first law:




ayward et al suggested a dynamical temperature

1
e — §*d*d7"

Which we can calculate for our solution

Kayn () = (f' +h) = £ (T) + O(eT)
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Then can extract the behaviour of the horizon, directly
depending on the gravitational strength of the scalar

I H2
QWKh

And write Q@ = sothat ¢? = n?




orizon gro epends primarily on A but the rate o
growth determined by the slow roll friction parameter
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(I is the integral in the variation of B)




growth determined by the slow roll friction parameter
AlA,
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» Have generalised slow-roll description to non-
homogeneous black hole background.

» The friction parameter for the scalar is increased by
the black hole

» Checked the first law — holds dynamically during the
flow.

» Explored dynamical temperature




