

Glueballs: At the interface between lattice QCD and constituent models

F. Buisseret

fabien.buisseret@umons.ac.be

Service de Physique Nucléaire et Subnucléaire UMons

Prologue

Outline

- A summary about glueballs
 - Experimental data
 - Lattice QCD
 - Mass spectrum
 - Wave function
 - Effective approaches
- How to build a constituent approach?
- Why?
- Informations from the lattice
 - Constituent gluons
 - Potential
- Glueball mass spectrum
- Two- and three-body states
- Large N limit
- Thermodynamics
- Conclusions

A summary about glueballs

University of Mons F. Buisseret | Service de Physique Nucléaire et Subnucléaire

Experimental data

Nothing unambiguous yet

- Too many 0(0⁺⁺) states for the quark model
 PDG: f₀(600), f₀(980), f₀(1370), f₀(1500), f₀(1710)
- Mixed states involving: $|u\bar{u}\rangle + |d\bar{d}\rangle$, $|s\bar{s}\rangle$, $|G\rangle$ • Unclear status of the $0(0^{-+})$ state $\eta(1405)$ • Future: PANDA, GlueX, ...
- Lack of unquenched QCD results
 - Mixings in Fock space
 - Decay widths

Lattice results (I)

Mass spectrum: Pure gauge, SU(3)

Lattice results (II) Pure gauge, SU(3) and SU(8)

H. B. Meyer and M. J. Teper, Phys. Lett. B 605, 344 (2005)

Lattice results (III)

Large N limit

B. Lucini, A. Rago, and E. Rinaldi, JHEP **1008**, 119 (2010)

Lattice results (IV)

Structure of the spectrum

- Lightest states with $C = + : 0^{++}, 2^{++}, 0^{-+}$
 - Scalar always the lowest-lying, 1400-1800 MeV
 - Range of some f₀ states
- No light 1^{P+} state

Large N limit Behavior in $M_G(N) = M_G(\infty) + \frac{\theta}{N^2}$ θ compatible with 0

Lattice results (V)

0⁺⁺ Wave functions **Bethe-Salpeter for a two-gluon state** $\chi(\vec{r}) = \langle 0|s^{\mu\nu} \int d\hat{r} Y_{lm}(\hat{r}) A^{\dagger}_{\mu}(\vec{x}) A_{\nu}(\vec{x}+\vec{r})|G \rangle$

P. de Forcrand and K. F. Liu, Phys. Rev. Lett. **69**, 245 (1992)

M. Loan and Y. Ying, Prog. Th. Phys. **116**, 169 (2006)

Effective approaches

Large amount of theoretical works

- Potential models / Constituent approaches
- Effective lagrangians
- AdS/QCD
- String theory

How to build a constituent approach?

University of Mons F. Buisseret | Service de Physique Nucléaire et Subnucléaire

Mass gap

N. Boulanger, FB, V. Mathieu and C. Semay, Eur. Phys. J. A 38, 317 (2008)

Why « constituent » ? (II)

Assumption: Glueball = bound state of gluons

Hamiltonian approach?

Gluon's features (I)

Color octet

- Singlet if more than 2 gluons
- Charge conjugation

lon
$$C A_{\mu} C^{-1} =$$

Glueball's C

Gluon mass

- 0 bare mass
- Generated
 - About 600 MeV at q²=0
 - Quite small above q² = 1 GeV

A.C. Aguilar and J. Papavassiliou, Phys. Rev. D **81**, 034003 (2010)

Gluon's features (II)

Spin degree of freedom

- Early works: spin 1, $S_z = -1, 0, +1$
 - Usual LS basis like quark models
 - Too many states when compared to lattice

V. Mathieu, N. Kochelev and V. Vento, Int. J. Mod. Phys. E 18, 1 (2009)

- Our approach: transverse gluons
 - Zero mass
 - Helicity 1, $\lambda=\pm 1$
 - Jacob and Wick's helicity formalism
 - Only the lattice states

V. Mathieu, FB and C. Semay, Phys. Rev. D **77**, 114022 (2008). M. Jacob and G. C. Wick, Ann. Phys. **7**, 404 (1959).

Helicity formalism (I)

Two-gluon states
$$\lambda_1, \lambda_2; J^P, M, \epsilon \rangle = \frac{1}{\sqrt{2}} \left\{ \Omega^J_{M,\lambda_1-\lambda_2} \left[|\psi(\vec{p}, \lambda_1)\rangle \otimes |\psi(-\vec{p}, \lambda_2)\rangle \right] + \epsilon \, \Omega^J_{M,\lambda_2-\lambda_1} \left[|\psi(\vec{p}, -\lambda_1)\rangle \otimes |\psi(-\vec{p}, -\lambda_2)\rangle \right] \right\}$$

$$\Omega_{M,\lambda}^{J}[X] = \left[\frac{2J+1}{4\pi}\right]^{1/2} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin \theta \\ \times \mathcal{D}_{M,\lambda}^{J*}(\phi,\theta,-\phi) R(\phi,\theta,-\phi) X(\phi,\theta)$$

Quantum numbers $J \ge |\lambda_1 - \lambda_2|$ $P = \epsilon(-)^J, \quad C = +$

Helicity formalism (II)

- Helicity states + Pauli principle
 - Color symmetric, spin-space symmetric
 - No 1⁺⁺ and 1⁻⁺ states
 - \blacksquare Yang's theorem, no $~\rho \rightarrow \gamma \gamma$
 - Lattice, no light J = 1 glueball
 - No 3⁺, 5⁺, 7⁺, ...
 Matrix elements \$\langle \vec{L}^2 \rangle = J(J+1) + 2\lambda_1 \lambda_2\$
 - Examples

$$\begin{array}{l} |0^{++}\rangle = \sqrt{\frac{2}{3}} \left| L = 0, S = 0 \right\rangle + \sqrt{\frac{1}{3}} \left| L = 2, S = 2 \right\rangle \\ |0^{-+}\rangle = - \left| L = 1, S = 1 \right\rangle \end{array}$$

Interaction potential (I)

Hamiltonian: ansatz $H_{gg} = 2\sqrt{\vec{p}^2} + V(r)$

O⁺⁺ Mass and wave function from the lattice

FB, Phys. Rev. D 79, 037503 (2009)

Interaction potential (II)

Instanton-induced forces

- Suggestion
 - Attractive in the scalar channel
 - Repulsive (same magnitude) in the pseudoscalar one

H. Forkel, Phys. Rev. D **71**, 054008 (2005)

Negative D-constant

Spin-effects

Neglected in first approximation

Glueball mass spectrum

University of Mons F. Buisseret | Service de Physique Nucléaire et Subnucléaire

Two gluons (I)

Mass spectrum

Two gluons (II)

Transverse gluons

- No light J = 1 state
- Expected number of states
- Good agreement
- Needed : relativistic kinematics

Longitudinal gluons

- Too many states
- Poor agreement

V. Mathieu, FB, and C. Semay, Phys. Rev. D 77, 114022 (2008)

Three gluons (I)

Color [[8,8]⁸s]^{1s}, C = −, symmetric spin-space Lightest states

- Like three photons
- Transverse: No light (pseudo)scalar state F.G. Fumi, L. Wolfenstein, Phys. Rev. 90, 498 (1953)

 $[[8,8]^{8_A}]^{1_A}, C = +, antisymmetric spin-space$ **Problem: Wick's formalism**

Not available yet for three-gluon glueballs

G.C. Wick, Ann. Phys. (N.Y.) **18**, 65 (1962)

Three gluons (II)

Mass spectrum with spin-1 gluons

V. Mathieu, C. Semay, and B. Silvetsre-Brac, Phys. Rev. D 77, 094009 (2008)

Four gluons?

- A heavy 0⁺⁻ state seen on the lattice
 - Highly excited three-gluon state
 - Low-lying four-gluon state
 Proposal, color function [[8,8]¹⁰, [8,8]¹⁰]¹

Symmetry

Mass estimate, ok with lattice QCD

Many-boy helicity formalism needed

Large N limit

Strong coupling $\sigma = \frac{C_R}{N}\sigma_0$

L. Del Debbio, H. Panagopoulos, P. Rossi, and E. Vicari, JHEP**01**, 009 (2002)

Invariant with N if R = Adjoint
 One gluon exchange $\propto C_R \alpha_s \propto \frac{C_R}{N} \alpha_0$ Invariant with N if R = Adjoint

Spectrum roughly invariant with N
 OK with recent lattice studies, up to SU(8)
 B. Lucini, A. Rago, and E. Rinaldi, JHEP 1008, 119 (2010)

Thermodynamics

University of Mons F. Buisseret | Service de Physique Nucléaire et Subnucléaire

Warming up

Increasing the temperature

Pure Yang-Mills similar to QCD

Equation of state

Results from the lattice

G. Boyd *et al.*, PRL **75**, 4169 (1995)

M. Panero, PRL **103**, 232001 (2009)

Phase transition, « weakly first order »

Quasiparticle models

Well above T_c

- Ideal gas of deconfined gluons
 - Thermal masses from perturbation theory
 - Scaling in (N² -1) as expected

Around T_c

- Strongly interacting gas of deconfined gluons
 - Maybe presence of glueballs
 - Not fully understood

Below T

- Glueball gas
 - Not studied a lot

Simple glueball gas Basic model: Ideal Bose gas Input, lattice spectrum + T = 300 MeV

Hagedorn spectrum (I)

Pressure underestimated

- Glueball pressure suppressed $\propto (2J+1) e^{-m_G/T}$
- Negligible contribution of high-lying states

String picture of glueballs

- String theory predicts a Hagedorn spectrum : Degeneracy growing like $e^{+m_G/T}$
- Relevant contribution of high-lying states
- Might be suggested by experimental data (mesons and baryons)

W. Broniowski, W. Florkowski and L. Y. Glozman, PRD 70, 117503 (2004)

Hagedorn spectrum (II)

Agreement with lattice data

H. B. Meyer, PRD 80, 051502(R) (2009)

Entropy of the confined phase (N_c=3, N_f=0)

Conclusions

University of Mons F. Buisseret | Service de Physique Nucléaire et Subnucléaire

Summary (I)

Glueballs : « QCD only »

- Pure gauge bound states
- Lattice : various data available
 - Mass spectrum in different cases
 - Wave function
 - Thermodynamics
- Constituent models
 - Successfull for mesons and baryons
 - Mass spectrum partly agrees with lattice data
 - Standard Hamiltonian
 - Transverse gluons with relativistic kinematics
 - Glueball gas for gluonic matter below Tc

Outlook

Three-gluon bound states

- Need to deal with helicity states for three identical transverse bodies
- C = sector in lattice still not understood

Experimental candidates

- Possibly seen in f_0 and f_2 resonances
- Probably not pure glue state
- Issue : « unquenching » the existing models
 - Much remains to be done

Very last slide

Lattice

- More fundamental
- Gives « all »
- Numerical

Constituent models

- Less fundamental
- Capture essential features
- Intuitive / analytical

