Results of Higgs Searches, and its Interpretation in the SM and its SUSY Extensions

U. Ellwanger, LPT Orsay

- 1) Higgs Search Channels
- 2) Present Results
- 3) Expectations in the SM and its SUSY Extensions

Higgs Production and Decays

Production mechanisms:

Dominant: Gluon-gluon fusion $g g \rightarrow H$ via a top-quark loop

Ass. production with W/Z-bosons: $q q \rightarrow H + W/Z$

LHC @14TeV: Vector Boson Fusion: $q q \rightarrow q' q' + W^+ + W^- \rightarrow q' q' + H$

Higgs decays:

Dominant for $M_H \gtrsim 135$ GeV: $H \to WW^{(*)} \to \dots, H \to ZZ^{(*)} \to \dots$

Dominant for $M_H \lesssim 135$ GeV: $H \rightarrow b \overline{b}$, but (nearly) useless at a Hadron Collider

Useful for 120 GeV $\leq M_H \leq$ 135 GeV: still $H \rightarrow W W^*$, $H \rightarrow Z Z^*$ and $H \rightarrow \gamma \gamma$, $H \rightarrow \tau^+ \tau^-$

For $M_H \lesssim 120$ GeV: only $H \to \gamma \gamma$, $H \to \tau^+ \tau^-$

Dominant Higgs Search Channels

 $H \rightarrow Z Z^{(*)} \rightarrow 4l$ (electrons/muons):

"Golden Channel", good mass resolution, but low branching ratio:

 $H \to Z Z \to l^+ l^- + \nu \bar{\nu}$: poor mass resolution, useful only for large M_H $H \to Z Z \to l^+ l^- + q \bar{q}$: somewhat larger BR, but large background

 $H \to WW^{(*)} \to l^+ l^- + \nu \bar{\nu} \ (+1 \ jet)$: larger BR, but poor mass resolution:

 $W H \rightarrow l \nu + b \overline{b}$: larger BR, but poor mass resolution and small signal/background ratio $Z H \rightarrow l^+ l^- + b \overline{b}$: small signal/background ratio $H \rightarrow \gamma \gamma$: good mass resolution, but low branching ratio, only for low M_H :

ightarrow light excess at $m_{\gamma\,\gamma}\sim$ 140 GeV

 $H \rightarrow \tau^+ \tau^- \rightarrow l^+ l^- + 4\nu$: poor mass resolution, small signal/background ratio, only for low M_H

 $H \rightarrow \tau^+ \tau^- \rightarrow \tau_{hadr} + l + 3\nu$: small signal/background ratio, low M_H only:

All channels must be combined!

Presentation of the Combined Results:

1) Assume a Higgs Boson of mass M_H , with an unknown production cross section $\sigma_{prod}(M_H)$ and branching ratios $BR(M_H)$ into the dominant channels:

 $\sigma_{prod}(M_H) \times BR(M_H) = R \times \sigma_{prod}(M_{H(SM)}) \times BR(M_{H(SM)})$ Theoretically: R can be larger or smaller than 1

2) It is easier to verify the absence than the presence of a Higgs Boson of a given mass M_H !

 \rightarrow For each value of M_H one can foresee ("expect"), how large R must be such that the absence of the Higgs Boson can be established at 95% confidence level

 \rightarrow Plot this expected lower bound on R as function of M_H , together with the 1- σ (green) and 2- σ (yellow) bands

 \rightarrow Show the observed lower bound on R

Tevatron, Combined Channels:

- The expected lower bound on R is below 1 (\rightarrow sensitive to a SM-like Higgs boson) only for $M_H <$ 110 GeV and 150 GeV $< M_H <$ 180 GeV
- A black line above the dotted line indicates (slightly) more events than expected, but no significant excess seen!

(Actually, a significant 5- σ excess is impossible to define from such plots)

ATLAS vs. CMS, Combined Channels:

HCP Conference, 14-18 November: ATLAS and CMS results have been combined:

LHC Combination SM Higgs Boson

All Channels combined

Observed exclusion 95% CL 141-476 GeV

Expected exclusion 95% CL 124-520 GeV What would we expect in the presence of a SM-like Higgs boson?

No incompatibility with the Standard Model is seen in ATLAS

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011 18

A closer look at the low mass region:

- \rightarrow Slight excess for 135 GeV $< M_{H} <$ 150 GeV
- \rightarrow Slight excess for $M_H \approx 120$ GeV

But: After taking the "look-elsewhere effect" (LEE) into account, the max. excess is 1.6 σ only!

Expectations for the Higgs Mass in the Standard Model:

From a combined fit to electroweak precision observables $(M_W, M_Z, \Gamma_Z, \sin \theta_W, \dots)$: Best fit for M_H below the LEP bound of 114.6 GeV, hence: Expect M_H close to 115 GeV!

Consistency of the Standard Model up to the GUT/Planck scale (the running Higgs self coupling neither turns negative, nor explodes): 130 GeV $\leq M_H \leq 170$ GeV

Expectations in the Minimal Supersymmetric Standard Model (MSSM):

Two Higgs doublets H_u , H_d , which give:

- A light nearly SM-like CP-even Higgs boson h,
- A nearly degenerate SU(2)-doublet H (neutral, CP-even),
 - A (neutral, CP-odd) and H^{\pm}

NOTE:

$$h$$
 must be light: $M_h^2 \sim M_Z^2 + \frac{3m_{top}^4}{4\pi^2 \langle H_u \rangle^2} \ln\left(\frac{M_{stop}^2}{m_{top}^2}\right) + \dots$

 \rightarrow 114 GeV $\leq M_h \leq$ 125...130 GeV (if $M_{stop} \rightarrow$ 1...3 TeV) \checkmark

Best fit within the CMSSM (universal soft Susy breaking terms at the GUT scale), taking into account present lower bounds on squark (and hence stop) masses: $M_h \sim 119$ GeV (J. Ellis et al.)

H, A (and H^{\pm}) are relatively heavy with a common mass m_A H and A decouple from the electroweak gauge bosons, but:

— can couple strongly to b-quarks

(coupling enhanced by $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$, if $\langle H_d \rangle$ is small)

— would be visible only in ass. production with *b*-quarks and decays into $\tau^+ \tau^-$. No signal \rightarrow blue/green region excluded:

The Next-to-Minimal Supersymmetric Standard Model (NMSSM):

An additional gauge singlet S, whose vev $\langle S \rangle$ explains the supersymmetric Higgs mass parameter μ of the MSSM

- → The simplest supersymmetric extension of the SM with a scale invariant superpotential
- \rightarrow 3 CP-even, 2 CP-odd neutral Higgs bosons

Typically: heavy H, A as in the MSSM, but:

- a) possibly strong mixings of the CP-even states h and S, and/or
- b) possibly a light singlet-like CP-odd state A_1

Consequences of a): The mostly SM-like Higgs boson can have a mass well above 130 GeV (contrary to the MSSM), but with reduced couplings (reduced cross section) due to its mixing with S; consistent with observations in the 140-150 GeV range \checkmark

Consequences of b): The mostly SM-like Higgs boson h would decay dominantly into $h \to A_1 A_1 \to 4b$, $2b2\tau$, 4τ , 4 gluons ... (dep. on M_{A_1})

- \rightarrow $M_h < 114~{\rm GeV}$ would be consistent with constraints from LEP
- \rightarrow For any M_h , h would be invisible in the standard search channels at the LHC!

What to expect from combined $(5+5)fb^{-1}$ data?

 \rightarrow From "exclusion" to "observation"?

Christmas (after CERN council meeting): combinations of all channels inside ATLAS and CMS? Combination ATLAS + CMS: Christmas + 2 months? Conclusions:

 \rightarrow After combining $1 - 2 f b^{-1}$ of data from ATLAS and CMS, a SM-like Higgs boson is excluded for $M_H = 141 - 476$ GeV

- \rightarrow Slight excess for 135 GeV $\lesssim M_H \lesssim$ 150 GeV
- \rightarrow Slight excess for $M_H \approx 120~{\rm GeV}$

The low mass region is consistent with expectations from electroweak precision data and supersymmetry

Note: In a region of high sensitivity, it would be consistent to exclude a Higgs boson with SM-like couplings, but to see simultaneously signals of non-SM-like Higgs boson(s) with reduced cross section \times BR

Note: If a SM-like Higgs boson gets excluded in the complete mass range, this is most likely a signal for a non-SM Higgs sector: Higgs bosons with reduced couplings, and/or unconventional decays!

End of 2012: $(15 + 15)fb^{-1}$ of data from ATLAS + CMS, 7 or 8 TeV?